A Design Methodology for Robust Two-Degree-of-Freedom Digital Preview Tracking Controllers

Jin-Hua She
Department of Mechatronics
School of Engineering
Tokyo University of Technology
1404-1 Katakura, Hachioji, Tokyo, 192-0982 Japan
she@cc.tceu.ac.jp

Min Wu
Department of Automatic Control Engineering
Central South University of Technology
Yue Lu Shan, Changsha, Hunan 410083 China
min@ccsut.edu.cn

Xin Xin
Department of Communication Engineering
Faculty of Computer Science and Systems Engineering
Okayama Prefectural University
111 Kubokō, Soja, Okayama, 719-1197 Japan
xxin@cc.oka-pu.ac.jp

Li-Li Guo
Electronic Engineering Department
Harbin Engineering University
31 Wenniao Street, Harbin, 150001 China
guoll@hrbeu.edu.cn

Abstract

This paper presents a design method for digital tracking control systems in which the plant has structured uncertainties. A two-degree-of-freedom control system configuration is utilized to achieve the desired feedback and input-output performances independently. First, sampled-data \(\mathcal{H}_\infty \) control and linear matrix inequality approaches are used to design a static state feedback controller and a reduced-order output feedback controller. Then, the parameterization of a feedforward controller is carried out based on the feedback controller, in which the free parameter is chosen to achieve the desired transient response using a preview strategy.

1. Introduction

Tracking control systems require not only good closed-loop performance, but also good tracking performance. However, there is usually a trade-off between them in a conventional one-degree-of-freedom (ODF) control system. So, it is difficult to design a satisfactory controller that meets both requirements. In contrast, a two-degree-of-freedom (TDF) control system processes the reference input and the plant output separately, thus enabling the independent design of the closed-loop and tracking performances. More specifically, the required performances can be achieved by designing a suitable feedback and feedforward controller, respectively (e.g., Vidyasagar, 1985; Hara and Sugie, 1988).

Over the past few years, sampled-data \(\mathcal{H}_\infty \) control, which handles the continuous uncertainties of a plant directly, has provoked a great deal of interest (e.g., Bamieh and Pearson, 1992; Kabamba and Hara, 1993). It motivates this study, which has the goal of designing a digital robust feedback controller in a TDF control system that handles continuous uncertain plants directly.

On the other hand, it is well known that the performance of a control system can be improved by constructively using information about future inputs (Tomizuka, 1993). Funahashi and Katoh (1992) proposed a design method for a preview step-type servo system that employs a TDF system configuration. Their method is based on parameterization of the stabilizing controllers of a TDF control system, and a preview action is introduced by expanding the parameter related to the tracking performance into an improper stable class.

This paper presents a design method for a TDF digital tracking control system for a continuous plant with uncertainties. Regarding the problem of designing the feedback controller, it is first formulated as a sampled-data \(\mathcal{H}_\infty \) control problem, and is then transformed into a discrete-time \(\mathcal{H}_\infty \) control problem. Since the order of an \(\mathcal{H}_\infty \) controller is usually very high, the results in Xin et al. (1996), in which a reduced-order controller was designed based on linear matrix inequalities (LMI) (e.g., Gahinet and Apkarian, 1994; Iwasaki and Skelton, 1994), are used to obtain static state feedback and reduced-order output feedback \(\mathcal{H}_\infty \) controllers. Regarding the design of the feedforward controller, first the parameterization of the controller is carried out based on the feedback controller. Then a method of designing an optimal preview tracking feedforward controller, that extends the basic idea proposed by Funahashi and Katoh (1992) to a general servo system, is explained.

Throughout this paper, \(z \) denotes a \(Z \)-transform variable, and \(\lambda \) denotes the delay operator such that \(\lambda = z^{-1} \) holds. \(R^{\mathcal{H}_\infty} \) is a set of real-rational functions in \(\lambda \) which have no poles in the closed unit circle. \(R \), indicates a set of real-rational functions in \(\lambda \) which have no poles in the closed unit circle except for the origin. \(R(\lambda) \) and \(R[z] \) are rings of polynomials in \(\lambda \subseteq R^{\mathcal{H}_\infty} \) and in \(\lambda \subseteq R \), respectively. \(\Omega(a(\lambda)) \) is the set of zeros of the polynomial \(a(\lambda) \); \(a^{+}(\lambda) \) and \(a^{-}(\lambda) \), which satisfy \(a(\lambda) = a^{+}(\lambda) a^{-}(\lambda) \), denote two polynomials with roots in and outside the closed unit circle, respectively. \(G \) indicates a continuous-time or discrete-time system, while \(\hat{G} \) indicates a hybrid system that contains both continuous and discrete-time time-invariant sub-systems.

All of the proofs are omitted for brevity.

2. Problem Formulation

Consider the TDF tracking control system configuration shown in Fig. 1. \(P(s) \) is a plant with structured uncertainties:

\[
\begin{align*}
\dot{x}_p(t) &= (A_P + \Phi \Gamma(t) \Psi_A)x_p(t) + (B_P + \Phi \Gamma(t) \Psi_B)u_P(t) \\
y(t) &= C_p x_p(t) \\
y_p(t) &= C_p x_p(t) \\
f_t^2(t) \Gamma(t) I &\leq I,
\end{align*}
\]

where \(x_p(t) \in R^{n_P} \), \(y(t) \in R \), \(u_p(t) \in R \) and \(y_p(t) \in R^{n_P} \) are the state, observed output, control input and measured variable of the plant, respectively. In particular, \(C_p = I_{n_P} \) means the state feedback, and \(C_p = C_p \) means the output feedback. Without loss of generality, \(C_p = [c_{P1} \ 0] \), \(c_{P1} \neq 0 \) \((c_{P1} \in R)\) is assumed. Let the reference input be

\[
\begin{align*}
\tau(\lambda) &= \frac{\bar{\tau}(\lambda)}{\phi_R(\lambda)} \\
\bar{r}(\lambda) &= r_0 + r_1 \lambda + \ldots + r_{L-1} \lambda^{L-1} \\
\phi_R(\lambda) &= 1 + \phi_1 \lambda + \ldots + \phi_L \lambda^L,
\end{align*}
\]
with all roots of $\phi_R(\lambda) = 0$ being in the closed unit circle. Then the state space representation of the internal model of the reference input, $M_R(\lambda)$, is

\[
x_R[i + 1] = A_R x_R[i] + B_R e_R[i]
\]

where

\[
A_R = \begin{bmatrix}
0 & 1 & & & \\
& & \ddots & & \\
& & & 0 & 1 \\
-\phi_L & -\phi_{L-1} & \cdots & -\phi_1 & 1
\end{bmatrix} \in \mathbb{R}^{L \times L}
\]

\[
B_R = [0 \ldots 0 1]^T \in \mathbb{R}^{1 \times L}.
\]

Now, letting the pulse transfer function of the nominal plant $P_0(\lambda)$ ($\Gamma(t) = 0$) with local feedback controller $K_{2P}(\lambda)$ be $G = N_0D_0^{-1}$ ($N_0, D_0 \in \mathbb{R}[\lambda]$) and applying the TDF control system configuration proposed by Hara and Sugie (1988) to G yield the configuration of the TDF robust control system (Fig. 1). In this figure, $K_1(\lambda)$ is the feedforward controller, and is chosen to be any stable pulse transfer function.

In Fig. 1, the feedback controller $K_2 = [K_{2P} K_{2R}]$ is defined in terms of $y_R[i]$ and $x_R[i]$ of M_R to be

\[
u_P[i] = K_2 \begin{bmatrix} y_R[i] \\ x_R[i] \end{bmatrix}.
\]

This paper considers the following design problem for robust tracking control systems.

(a) Design a reduced-order feedback controller K_2 in Eq. (4) with an order less than n_P, that robustly stabilizes the system control in Fig. 1.

(b) Design a feedback controller that yields the desired nominal input-output tracking performance.

The following assumptions are necessary for the solvability of the problem.

(A1) $P(s)$ in Eq. (1) is stabilizable and detectable.

(A2) The sampling period, τ, is chosen so that the discrete plant obtained by putting a zero-order holder, H_{τ}, and a sampler, S_{τ}, at the input and output of $P(s)$, respectively, is stabilizable and detectable.

(A3) $\phi_R(\lambda)$ has no zeros in common with the pulse transfer function of the nominal plant $P_0(\lambda)$.

3. Design of Feedback Controller

Redrawing Fig. 1 with $r[i] = 0$ gives Fig. 2, in which the two new signals $v(t)$ and $w(t)$ are defined to be the input and output of the uncertainty $\Gamma(t)$, respectively; and the other new signals, $u_v(t)$, $u_P(t)$ and $u_R[i]$, are the control input, and the states of the plant and internal model weighted by positive semi-definite matrices $Q_{1}/2$, $Q_{1}/2$ and $Q_{1}/2$, respectively.

The condition for the robust stability of the control system in Fig. 1 is as follows (Sivashankar and Khargonekar, 1993).

Lemma 1 The control system in Fig. 1 is robustly stable if the following holds in Fig. 2:

\[
||\mathcal{G}_P|| := \sup_{w(t) \in L_2} \|v(t)\|_2 < 1, \quad (5)
\]

Let

\[
v_a := [v(t) \quad u_v(t) \quad u_P(t) \quad u_R[i]]^T,
\]

then the design problem for the feedback controller is formulated as:

Find a reduced-order feedback controller $K_2(\lambda)$ in Eq. (4) that internally stabilizes the generalized plant \mathcal{P}_S described by

\[
\begin{bmatrix} v_a \\ y_R[i] \\ x_R[i] \end{bmatrix} = \mathcal{P}_S \begin{bmatrix} v(t) \\ v(t) \\ \Gamma(t) \end{bmatrix}, \quad (6)
\]

and satisfies $||\mathcal{G}_S|| < 1$, where $\mathcal{G}_S = \mathcal{P}_S K_2 = \mathcal{P}_{S11} + \mathcal{P}_{S12} K_2(I - \mathcal{P}_{S22} K_2)^{-1} \mathcal{P}_{S21}$, and \mathcal{P}_S is given by

\[
\mathcal{P}_S = \begin{bmatrix} \mathcal{P}_{S11} & \mathcal{P}_{S12} \\ \mathcal{P}_{S21} & \mathcal{P}_{S22} \end{bmatrix} = \begin{bmatrix} A_R & -B_R S \mathcal{C}_P & 0 & 0 \\ 0 & A_P & \Phi & \Psi \mathcal{H}_T \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.
\]

This design problem for the feedback controller can easily be converted to an equivalent discrete-time \mathcal{H}_∞ control problem (She and Nakano, 1996).

Let the equivalent generalized plant be

\[
P_c(\lambda) := \begin{bmatrix} A & B_1 & B_2 \\ C_1 & D_{11} & D_{12} \\ C_2 & D_{21} & D_{22} \end{bmatrix}, \quad (7)
\]

then the design problem can be solved by the following lemma (Gahinet and Apkarian, 1994).
If it is solvable with the LMI solution
and also decompose
and only if
Suppose
hold, which imply that a feedback controller,
exists a static state feedback controller.
and construct

Then,

hold, which imply that a feedback controller,
exists that satisfies the low-ripple condition are given by

Substituting Eq. (23) into Eqs. (19) and (21) yields

Thus, the problem of designing the feedforward controller becomes that of designing

Without loss of generality, assume
\[
\begin{cases}
D = a_0 + a_1 \lambda + \cdots + a_n \lambda^n; \\
N = \lambda^m b(\lambda);
\end{cases}
\]
where \(a_0, a_n \neq 0, b_0, b_l \neq 0\).

Now we are ready to construct a feedforward controller \(K^*_1 \in \mathbb{R}[\lambda]\) with a minimum settling-time.

LEMMA 4 The \(K^*_1\) in (23) that yields low-ripple deadbeat control with a minimum settling-time is given by
\[
\bar{K}^*_1 = \frac{1 - \phi_0 f^*}{N} \in \mathbb{R}[\lambda],
\]
where \(f^* = f_0^* + f_1^* \lambda + \cdots + f_{m-1}^* \lambda^{m-l-1}\), and its coefficients are determined by the following algorithm. (For simplicity, we assume that \(b(\lambda) = 0\) has only simple roots, which are denoted by \(\lambda_1, \lambda_2, \ldots, \lambda_l\).)

Algorithm:

Step 1 \(f_0^*, f_1^*, \ldots, f_{m-1}^*\) are determined by \(\phi_0(\lambda)\) and the \(m\)-multiple original zero of \(N(\lambda)\):

If \(L > m - 1\),
\[
\begin{bmatrix}
 f_0^* \\
 f_1^* \\
 \vdots \\
 f_{m-1}^*
\end{bmatrix} = \begin{bmatrix}
 1 & \phi_1 & \cdots & 0 \\
 \phi_0 & \cdots & \phi_{m-1} & \phi_1 \\
 \vdots & \cdots & \vdots & \phi_0 & \cdots & \phi_{m-1} & \phi_1 \\
 0 & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \phi_0 & \cdots & \cdots & \phi_{m-1} & \phi_1
\end{bmatrix}^{-1} \begin{bmatrix}
 1 \\
 0 \\
 \vdots \\
 0
\end{bmatrix}
\]
and if \(L \leq m - 1\),
\[
\begin{bmatrix}
 f_0^* \\
 f_1^* \\
 f_2^* \\
 \vdots \\
 f_{m-1}^*
\end{bmatrix} = \begin{bmatrix}
 1 & \phi_1 & \cdots & 0 \\
 \phi_0 & \cdots & \phi_{m-1} & \phi_1 \\
 \phi_0 & \cdots & \cdots & \phi_0 & \cdots & \phi_{m-1} & \phi_1 \\
 0 & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \phi_0 & \cdots & \cdots & \phi_{m-1} & \phi_1
\end{bmatrix}^{-1} \begin{bmatrix}
 1 \\
 0 \\
 \vdots \\
 0
\end{bmatrix}
\]

Step 2 \(f_m^*, f_{m+1}^*, \ldots, f_{m+l-1}^*\) are determined by \(\phi_0(\lambda)\) and the \(l\)-simple zeros, \(\lambda_1, \lambda_2, \ldots, \lambda_l\), of \(N(\lambda)\):
\[
\begin{bmatrix}
 f_m^* \\
 f_{m+1}^* \\
 \vdots \\
 f_{m+l-1}^*
\end{bmatrix} = \begin{bmatrix}
 1 & \lambda_1 & \cdots & \lambda_1^{l-1} \\
 1 & \lambda_2 & \cdots & \lambda_2^{l-1} \\
 \vdots & \cdots & \cdots & \cdots \\
 1 & \lambda_l & \cdots & \lambda_l^{l-1}
\end{bmatrix}^{-1} \begin{bmatrix}
 g(\lambda_1) \\
 g(\lambda_2) \\
 \vdots \\
 g(\lambda_l)
\end{bmatrix},
\]
where
\[
g(\lambda) := \frac{1}{\lambda^m \phi_0(\lambda)} - \sum_{i=0}^{m-1} f_i^* \lambda^{i-m}.
\]

Based on the above results, the preview feedforward controller can be parameterized by the following theorem.

THEOREM 2 All \(K^*_1 \in \mathbb{R}[\lambda] \cup \mathbb{R}[\lambda]\) that yield low-ripple deadbeat control are given by
\[
\bar{K}_1 = \bar{K}^*_1 + \phi_0 \bar{K}_1, \quad \bar{K}_1 \in \mathbb{R}[\lambda] \cup \mathbb{R}[\lambda],
\]
where \(\bar{K}^*_1\) is obtained in Lemma 4, and \(\bar{K}_1\) is any polynomial in \(\lambda\) and \(z\).
Hence, the performance index (37) becomes
\[J = \sum_{i=0}^{L-1} |e_i|^2 + \rho^2 \sum_{i=0}^{L-1} |\Delta \hat{w}_i|^2. \]
(41)

Then, according to \(\mathcal{H}_2 \) optimization method, the \(\hat{K}_1 \) that minimizes \(J \) is given by the following theorem.

THEOREM 3 The coefficient vector of \(\hat{K}_1 \in \mathbb{R}[\lambda] \cup \mathbb{R}[\bar{\omega}] \) that minimizes the performance index \(J \) in (41) is
\[[\hat{k}_q \ldots \hat{k}_0 \hat{k}_{-1} \ldots \hat{k}_{-p}]^T := F_1^{-1} F_2, \]
(42)

where
\[\begin{align*}
F_1 &= \begin{bmatrix} \Theta^T & -\rho \Xi^T \end{bmatrix} \begin{bmatrix} -\rho \Xi \end{bmatrix}, \\
F_2 &= \begin{bmatrix} \Theta^T & -\rho \Xi^T \end{bmatrix} \begin{bmatrix} E^* \\
-\rho \Delta U^*_W \end{bmatrix}, \\
\Theta &= \begin{bmatrix} \theta_0 & 0 \\
\vdots & \vdots \\
\theta_{L+i-1} & \theta_0 \\
0 & \theta_{L+i-1} \end{bmatrix}, \\
\Xi &= \begin{bmatrix} \xi_0 \\
\vdots \\
\xi_{L+n-1} \end{bmatrix}, \\
E^* &= \begin{bmatrix} \bar{e}_0 & \bar{e}_1^* & \ldots & \bar{e}_{L-2}^* & 0_{p+1} \\
0 & \xi_0 & \ldots & \xi_{L+n-1} \end{bmatrix}, \\
\Delta U^*_W &= \begin{bmatrix} \Delta \hat{w}_{00} & \Delta \hat{w}_{11} & \ldots & \Delta \hat{w}_{(L-2)p-2} & 0_{p+1} \end{bmatrix}^T
\end{align*} \]
(43)

with elements of the matrices and vectors of Eqs. (45) - (48) being given by Eq. (40). The minimum of \(J \) is
\[J_{\min} = \|E^*\|^2 + \rho^2 \|\Delta U^*_W\|^2_2 - F_2^T F_1^{-1} F_2. \]
(49)

Regarding the relationship between \(J \) in Eq. (41) and \(n_{K1} = p + q \), we have the following theorem.

THEOREM 4 The performance index \(J \) in Eq. (41) is a monotonically decreasing function of \(p \) and \(q \), which are parameters related to the settling steps and the preview steps, respectively. In addition,
\[J_{\text{opt}}^\infty = \lim_{n_{K1} \to \infty} \min \left(J \right) = \left\| \left[T_{11} \right] \right\|_2^2, \]
(50)

\[T_1 := \begin{bmatrix} \lambda^{q-m} & \bar{f}^* \\
\lambda^q & \bar{f} \end{bmatrix}, \quad T_2 := \begin{bmatrix} \bar{b}^T & -\rho \bar{D} \end{bmatrix}, \]
\(\lambda \in \mathbb{R} \) is chosen such that, for the inner-decomposition of \(T_2 \)
\[T_2 = T_{21} T_{22}, \]
(52)

\(T_{21} H \) is a square matrix that satisfies
\[\frac{T_{21}^H H^L}{T_{21}} \left[T_{21} \ H \right] = I. \]
(53)
very small when the reference is input, and the control input during the transient response is moderately restricted. When \(\zeta (0 \leq \zeta \leq 1) \) is different from its nominal value of 0.5, the system still remains stable and its output tracks the reference input without steady-state error. As an example, Fig. 4 shows the simulation results for a plant with \(\zeta = 0 \).

Next, let us consider the output feedback case \(C_F = C_P \). An output feedback controller is designed using Theorem 1. It has an order of one \((n_F - 1 = 1)\). If we let \(p = 19, q = 21\), we obtain a preview feedforward controller that settles the outputs in the third period.

As was seen in the state feedback case, the simulation results show that the control system is stable for \(0 \leq \zeta \leq 1\); and during the transient response, the tracking error is suppressed to a very low level, with the control input being moderately restricted. As an example, Fig. 5 shows the simulation results for \(\zeta = 0 \).

6. Conclusions

This paper describes a design method for digital tracking control systems for a continuous plant with structured uncertainties. A TDF tracking control system configuration is exploited. Regarding the design of the feedback controller, in order to robustly stabilize a plant with structured uncertainties, the design problem is first formulated as a sampled-data \(H_\infty \) control problem, and then transformed into an equivalent discrete-time \(H_\infty \) control problem. A static state feedback controller and a reduced-order output feedback controller with an order no greater than that of the plant minus one have been designed by using the LMI-based \(H_\infty \) control approach. Regarding the design of the feedforward controller, parameterization of the feedforward controller is carried out based on the previously designed feedback controller, in which the free parameter is chosen to achieve the desired transient response using a preview strategy. The validity of the method has been demonstrated by simulations.

References

