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ABSTRACT

In this paper it will be explained how to use bitboards for move generation in shogi. In chess,
bitboards have been used in most strong programs because of the easy representation of a chess board
by a single 64-bit integer. For shogi, a less efficient representation has to be used because a shogi
board has 81 squares instead of 64. A representation with an array of three integers is proposed,
where each integer represents 27 squares of the board. This representation is then used for move
generation in a similar way to the methods used in chess, for example by using rotated bitboards
for generating the moves of the sliding pieces Rook and Lance. For generating the moves of the
Bishop, rotated bitmaps are not completely satisfactory and a different method using the alignment
of diagonals is proposed for move generation. A comparison of the move-generation speed between
using bitboards and the more common method of using attack tables showed that even without using
hardware dependent optimizations the move-generation speed of the shogi program SPEAR using
bitboards was more than 40% faster than the move generation using attack tables.

1. INTRODUCTION

Bitboards are a binary representation of knowledge for all squares on the board. The presence of certain informa-
tion for a square is represented by setting the bit for this square on the board to 1, while the absence is represented
by 0. Bitboards have been used extensively in chess programs (Adelson-Velskiy et al., 1970; Slate and Atkin,
1977; Cracraft, 1984; Wendroff, 1985; Hyatt, Gower, and Nelson, 1990; Heinz, 1997; Hyatt, 1999b). The reason
for this is that the size of the board (8 x 8 = 64 squares) makes it possible to fit one bitboard into a single 64-bit
integer. Therefore, the representation of bitboards is very efficient (no unused memory) and representing new
knowledge by combining the information from different bitboards is very fast because logical operations like
AND, OR, NOT and XOR can be used directly.

Until recently, the bitboard approach has not been given much attention in games other than chess. As a shogi
programmer, I envied the computer-chess community for having a game with a 64-square board that makes such
an elegant representation possible. The shogi board has 81 squares (9 x 9) and a bitboard representation seems to
be too inefficient to be useful. In my shogi program SPEAR (and most shogi programmers use a similar approach),
I have been using simple attack tables to keep information about where pieces can move to and how many pieces
can move to a certain square. These tables are updated incrementally and a stack is used to restore the information
in the attack tables in case of undoing a move. Quite a complicated piece of code and an area of the program that
I rather not touch even if there are some obvious optimizations that can be implemented.

Recently, a combination of events sparked my interest in bitboards for shogi. First, the difficult preparation of
my shogi program for last year’s World Computer Shogi Championships and the rather disappointing result in
the tournament showed that there were some fundamental flaws in the program. Second, the tournament was
won by first-year entry BONANZA, which was rumored to use bitboards. Finally, a discussion on the computer
shogi bulletin board of Hiroshi Yamashita (2005) (the programmer of former world champion YSS and runner-
up in last year’s championship) about using bitboards in shogi was brought to my attention. Yamashita had
tried bitboards in shogi and reported a 20% increase in speed, which he found disappointing. My feelings were
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completely different: if bitboards are good enough to improve YSS, they are definitely good enough to improve
my program. Furthermore, further study showed that Yamashita’s bitboard implementation was far from optimal.

I spent the summer rebuilding my shogi program from scratch with bitboards instead of attack tables and my
findings are that bitboards are a very promising representation in shogi as well, despite the obvious inefficiencies
that are the result of having a board with 81 squares. In this paper I will first explain in Section 2 how bitboards
have been used in chess. In Section 3 I will then give details about using bitboards in shogi. The experiments
in Section 4 show that by using bitboards, the move-generation speed can be improved by more than 40% when
compared to attack tables. This is only a first step into the use of bitboards in shogi and in Section 5 a number of
ideas for further improvements are given.

2. BITBOARDS IN CHESS

In chess, bitboards were first used in the famous KAISSA program (Adelson-Velskiy et al., 1970) in the late 1960s.
The first detailed description of how to use bitboards for generating moves was given by Slate and Atkin (1977).
This was done by incrementally updating sets of bitboards that contain the information of where a piece on
a square can move to (attacks_from[BOARDSIZE]) and information about which pieces can move to a
square (attacks_to [BOARDSIZE]). With this information, it is easy to generate the moves for non-sliding
pieces by taking the AND of the corresponding attacks_from bitboard with the bitboard having Os for the
friendly pieces and looping through the set bits.

unsigned_64 target = "FriendlyPieces;
from = PieceSQ; // PieceSQ is the square of the non-sliding piece
unsigned_64 piece_moves = attacks_to[from] & target;

while (piece_moves) {
// Find the next 1 in the bitboard
to = FirstOne (piece_moves) ;
// Generate the move with the available information
generate_move (Piece, from, to);
// Clear the 1 in the piece moves bitboard
Clear (to, piece_moves);

}

The problem is with the sliding pieces (Queen, Rook, and Bishop in chess), because the square to where these
pieces can move, depends on which pieces are blocking the paths of the sliding pieces. This information is only
available during the game and early attempts had bitboards for the rays of sliding pieces (i.e. a 1 for every square
the piece could move to if blocking was ignored) and focused on how to strip off efficiently the bits beyond a
blocking piece. An explanation of this rather complicated method is given by Hyatt (1999b).

An important improvement of this method was given by Wendroff (1985), who pre-calculated the attacks for all
possible blocking patterns for all possible squares, so that only a blocking pattern had to be calculated during the
game (which is just taking the AND of the non-occupied squares and the rays of the piece). For example, the
horizontal attack patterns for all squares for a Rook in chess can be pre-calculated and stored in the bitboard array
horizontal_attacks[64] [256]. Generating the horizontal moves for a Rook is then straightforward.

from = RookSquare;
// Isolate the bits on Rook rank that represent occupied squares
int blocking = GetRankBits (FriendlyPieces | OpponentPieces, from);
// This pattern can now be used to find the pieces that a Rook can move to
unsigned_64 piece_moves = horizontal_attacks[from] [blocking];
while (piece_moves) {
to = FirstOne (piece_moves) ;
generate_move (ROOK, from, to);
Clear (to, piece_moves);

}

The size of the array horizontal_attacks[64] [256] isis 8 X 64 x 256 = 131 KB, which is quite a big
chunk of memory. In an addition to his ICCA paper, Hyatt (1999a) explained that the occupation of the end
squares of a rank is irrelevant (the attack will be the same whether these squares are occupied or not). Therefore,
the bitboard array can be reduced to horizontal_attacks [64] [64] which is only 32 KB. The blocking
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pattern calculation becomes slightly more complicated in the sense that the end bits of the rank pattern have to be
stripped.

This method only works well if the block pattern bits are adjacent, which is not the case for vertical attacks and
for diagonal attacks. A solution to this problem that was given by Heinz (1997) is to force the bits in adjacent
positions by rotating the board. For vertical attacks, a 90 degree rotation will ensure that ranks become files
and files become ranks. This bitboard must be updated at every move, which is a slightly inefficient, but if this
information is available, it is again possible to pre-calculate all the vertical attack patterns and use these together
with the rotated occupation information to get the vertical squares a Rook can move to.

from = RookSquare;

// Isolate the bits on Rook rank that represent occupied squares in rotated form
int blocking = GetRankBits (FriendlyPiecesRotated | OpponentPiecesRotated, from);
// Strip the end bits

blocking = (blocking & 127) >> 1;

// This pattern can now be used to find the pieces that a Rook can move to

unsigned_64 piece_moves = vertical_attacks[from] [blocking];
while (piece_moves) {
to = FirstOne (piece_moves) ;

generate_move (ROOK, from, to);
Clear (to, piece_moves);

}

For diagonals the situation is a little bit more complex, because the number of diagonals is larger than the number
of ranks and the lengths of the diagonals vary from 1 to 8. Heinz (1997) solved this problem by aligning the
diagonals such that the squares of each diagonal are represented by adjacent bits. Hyatt (1999b) stayed closer to
the rotation idea by forcing the diagonal squares in adjacent bits by using board rotations of 45 degrees. There is
not much difference between these two methods in chess, but it will be explained later that in shogi the alignment
of diagonal bits is important.

There are some additional problems with using bitboards in chess, like dealing with en-passant captures and
castling, but these will be omitted because they do not play a role in shogi.

3. BITBOARDS IN SHOGI

In a sense, shogi is a more regular game than chess. As mentioned, there are no en-passant captures and special
castle moves. All pieces capture in the direction they move. Also, even though the piece movement of most
pieces is different from chess, there are only three sliding pieces: Rook, Bishop, and Lance. The movement of
the Rook and Bishop is identical to the Rook and Bishop in chess, which leaves only the Lance as a special case.
Another difference between shogi and chess is that in shogi almost all pieces can promote. However, most pieces
promote to the same piece (a Gold general) and there are no promotions to different sliding pieces. Therefore, to
use bitboards in shogi the main problem lies in dealing with the larger board.

3.1 Basic Bitboards

The chessboard has 64 squares, which means that the information about a position fits into a single 64 bit integer.
In shogi, this information has to have 81 bits, which will not fit into a single integer. Like Yamashita (2005), I
use three integers for representing the 81 bits of the board. Yamashita defined a structure of three integers, but as
Hoki (2005) pointed out, it is better to define an array of length 3 (why this is better will become clear later).

typedef struct {
unsigned int bb[3];
} BITBOARD;

Because of the different board sizes of chess and shogi, for each bitboard there will 15 bits that are obsolete
(3 x 32 bits—81 bits = 15 bits). Therefore, 16% of the memory allocated to bitboards will not be used. This
cannot be helped, but it is also the reason why three 32 bit integers were used for the representation instead of
two 64 bit integers (in which case 37% of the bitboard memory would not be used).
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Figure 1: Square numbers of a shogiboard (left) and the correspondence between shogiboard squares and bit-
board integer bits (right).

Each of the three integers represents one third of the board. In my representation, the first 27 bits of the first
integer represent squares 1c to 9a. The first 27 bits of the second integer represent the squares 1f to 9d. Finally,
the first 27 bits of the third integer represent the squares 1i to 9g (see Figure 1). Splitting the board up in this
way is different from Yamashita’s presentation, but an important optimization. The squares lc to 9a are the
squares on which the black pieces can promote, while the squares 1i to 9g are the squares where the white pieces
can promote”. With this representation it is often possible to access only one bitboard integer when generating
promotions instead of having to access all three bitboard integers.

To manipulate bitboards in chess, straightforward logical operations can be used. However, when a bitboard
consists of three different integers, this is no longer possible. Logical operations like taking the AND of two
bitboards have to be defined as follows:

void AndBB (BITBOARD *to, BITBOARD xfroml, BITBOARD xfrom2) ({

to—>bb[0] = froml->bb[0] & from2->bb[0];
to->bb[1] = froml->bb[l] & from2->bb[1];
to->bb[2] = froml->bb[2] & from2->bb[2];

}

In my implementation, I use similar operations for OR, XOR and NOT. Furthermore, I use the basic operations
ClearBB (setting all bits to 0), Set BB (setting all bits to 1), and CopyBB (copying a bitboard).

With the basic bitboard data structure defined like this, it is now possible to represent the knowledge needed in
a shogi program in a similar way to the bitboards in chess. For example, useful information is to know which
squares are occupied. For the starting position of shogi, the bitboard Occupied has Is for the squares with a
black or white piece and Os for squares without pieces (Figure 2).

In the BITBOARD data structure this would be:

bb[0]: 00000111111111010000010111111111
bb[1]: 00000000000000000000000000000000
bb[2]: 00000111111111010000010111111111

My implementation has bitboards for the occupied squares (Occupied), the black pieces (BlackPieces),
the white pieces (WhitePieces), and for each black and white piece separately. These bitboards for position
information must be updated each time the position changes, i.e., each time either player makes a move.

2In shogi, the black player is the player moving up the board, while the white player moves down the board.
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Figure 2: Bit settings for the starting position in shogi.

3.2 Attack Bitboards
Shogi has the following pieces:

o Non-sliding pieces: King, Gold general, Silver general, Knight, Pawn,

e Sliding pieces: Rook, Bishop, Lance.

The Silver general, Knight, Pawn, and Lance promote to Gold general, which is also a non-sliding piece. The
Bishop and Rook promote to Dragon and Horse. The Dragon is a Rook with the single diagonal squares added
to the movement, while the Horse is a Bishop with the single horizontal and vertical squares added. Therefore,
Dragon and Horse can be handled in the same way as Rook and Bishop.

The non-sliding pieces are handled exactly the same way as in chess, only the initialization of the pre-calculated
bitboards has to be different based on the different movements of the pieces.

For the Rook, using bitboards is also very similar to the method explained by Hyatt (1999b). The only difference
is that ranks and files are one square longer, so the pre-calculated bitboards are larger. Let us look at the calculation
method for horizontal attacks as an example.

First, the definition of the pre-calculated bitboards:

BITBOARD RankAttacks[81][128];

These bitboards are filled with all the possible block patterns at the start of the program.
The horizontal attacks for a Rook on a square are then calculated as follows.

void CalcRankAtt (BITBOARD +*bb, int from) {
// Get the block pattern from the position bitboard
int blocking = GetRankBits (&Occupied, from);
// Strip the bits for the edge squares
blocking = (blocking & CLEARI9MASK) >> 1;
// Get the horizontal attacks from the pre-calculated bitboards
CopyBB (bb, &RankAttacks[from] [blocking]);

int GetRankBits (BITBOARD xbb, int sqg) {
// Take the rank bits from bitboard integer 0, 1, or 2
return (bb->bb[sqg_to_bb_index[sqg]] >> rank_shift_no[sqg]) & ALLONES_9;
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It is now clear why having an array of three integers is a better representation than three different integers like in
Yamashita’s original implementation. By using the array sg_to_bb_index to access the bitboard integer that is
needed, no if-statements are required.

For vertical attacks, the new bitboard Occupied_rot 90 is needed to represent the occupied squares in case of
rotation, like in chess. With this bitboard and the block patterns in FileAttacks[81] [128], the file attack
code is straightforward:

void CalcFileAtt (BITBOARD #*bb, int from) {
// Get the block pattern, rotating the source square 90 degrees
int blocking = GetRankBits (&Occupied_rot90, init_rot90[from]);
// Strip the bits for the edge squares
blocking = (blocking & CLEAROMASK) >> 1;
// Get the vertical attacks
CopyBB (bb, &FileAttacks[from] [blocking]);

// Translate square to 90 degree rotation square

int init_rot90([] = {
72, 63, 54, 45, 36, 27, 18, 9,
73, 64, 55, 46, 37, 28, 19, 10,
74, 65, 56, 47, 38, 29, 20, 11,
75, 66, 57, 48, 39, 30, 21, 12,
76, 67, 58, 49, 40, 31, 22, 13,
77, 68, 59, 50, 41, 32, 23, 14,
78, 69, 60, 51, 42, 33, 24, 15,
79, 70, 61, 52, 43, 34, 25, 1le,
80, 71, 62, 53, 44, 35, 26, 17,
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This solution was given by Hyatt (1999b) for chess and it can be used in shogi as well. In chess it is only
used for Rook attacks, but in shogi it can be used for both Rooks and Lances. The difference for a Lance
is that a Lance can only move vertically and cannot move back. Therefore, two additional blocking pattern
data structures, BlackLanceAttacks[81][128] and WhiteLanceAttacks[81] [128] are needed to
translate the possible blocking patterns to the squares the Lance is attacking.
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Figure 3: Bit assignment for 45 degrees clockwise rotation (left) and 45 degrees anti-clockwise rotation (right).

void CalcBlackLanceAtt (BITBOARD xbb, int from) {
int blocking = GetRankBits (&Occupied_rot90, init_rot90[from]);
blocking = (blocking & CLEARSMASK) >> 1;
CopyBB (bb, &BlackLanceAttacks[from] [blocking]);

}

In the case of diagonals, there is a problem with the approaches taken by Hyatt (1999b) and Heinz (1997). For
example, when the diagonals are put in adjacent bits using the 45 degree rotations, the bits of the bitboard are
assigned as in Figure 3.

In Figure 3 it can be seen that there are diagonals overflowing into the next integer of the bitboard. For clockwise
rotation, square 6 is part of the diagonal 54 46 38 30 22 14 6 (9g to 3a) and square 74 is part of the diagonal 74
66 58 50 42 34 26 (7i to 1c). Similarly, for anti-clockwise rotation, the square 62 is part of the diagonal 2 12 22
3242 52 62 (7ato 1g) and square 18 is part of the diagonal 18 28 38 48 58 68 78 (9c¢ to 3i). This requires an extra
check when translating diagonals to adjacent bits, which is inefficient?.

This problem can be solved by fitting the diagonals in a less natural way, but such that no diagonal overflows
into the next integer of the bitboard. The translation I used for the north-west diagonals is given in Figure 4. The
north-east diagonals have been fitted in a similar way.

The pre-calculated block pattern bitboards are stored in the following bitboard arrays:

BITBOARD DiagonalAttacks_nw([81][128];
BITBOARD DiagonalAttacks_ne([81][128];

The calculation procedure for finding the squares that a Bishop is attacking now becomes:

void BishopAttacks (BITBOARD x*bb, int from) {
BITBOARD nw;
int blocking = GetDiagonalBits (&BothPieces_nw, init_nw[from]);
blocking = (blocking & CLEARSMASK) >> 1;
CopyBB (nw, &DiagonalAttacks_nw[from] [blocking]);
blocking = GetDiagonalBits (&BothPieces_ne, init_ne[from]);
blocking = (blocking & CLEARSMASK) >> 1;
OrBB (bb, nw, &DiagonalAttacks_ne[from] [blocking]);

3To be exact, square 74 (18 in the anti-clockwise version) is not a problem, because this is an edge square at the top of the diagonal and
will be stripped anyway. Therefore, this overflow into the next integer of the bitboard (from bb [1] to bb [2]) can be ignored. Square 6 (62
in the anti-clockwise version) is also an edge square, so its contents can be ignored. However, because this time the square is at the bottom
of the diagonal (i.e., the most significant bit) there is the problem of fitting the remaining 6 bits of the diagonal to the 7 bit block information.
A single left shift is needed while for all the other diagonals a right shift is needed. Therefore, these two diagonals are a special case and a
condition has to be added to the function that gets the block information from the rotated boards.
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Figure 4: Bit assignment for north-west diagonals.

int GetDiagonalBits (BITBOARD =*bb,

return

}

int init_nw(]
0, 9, 217,
17, 1, 10,
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75, 69, 61,
78, 76, 170,
80, 79, 77,
}i

= {
41,
28,
11,
3/
20,
37,
50,
62,
71,

int dia_shift_nol[]

18, 18, 18,
10, 10, 10,
2, 2, 2,
20, 20, 20,
13, 13, 13,
7, 71, 1,
22, 22, 22,
17, 13, 13,
6, 6, 6,
}i

int dia_mask][]

18,
10,
2/
20,
13,
1/
22,
13,
3/

= {

54,
42,
29,
12,

21,
38,
51,
63,

18,
10,

20,
13,

22,
13,
3,

64,
55,
43,
30,
13,

22,
39,
52,

72,
65,
56,
44,
31,
14,

6/
23,
40,

25,
73,
66,
57,
45,
32,
15,

24,

int sq)
(bb—>bb[square_to_bb_dia_index[sq]]

53,
26,
74,
67,
58,
46,
33,
16,

511,511,511,511,511,511,511, 511,511,
255,255,255,255,255,255,255,255, 255,
255,255,255,255,255,255,255, 3
127,127,127,127,127,127,127,127,127,
127,127,127,127,1217,

63, 63, 63

31, 31, 31

31, 15, 15

7, 1, 1
}i

’ 63’
4 31’
. 15,
4 7’

63,
31,
15,

7/

63,
63,
31,
15,

7/

63
63
31
15

, 63
, 63
, 31
, 15

3, 3

’

4

’

I4

’

I4

3,

63,

1,

31,
15,

1,

{

>> dia_shift_nol[sq])

March 2007
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Version 3-ply 4-ply
Attack tables | 1509s | 165648s
Bitboards 905s 97459s
Savings 43% 41%

Table 1: Results of 3-ply and 4-ply minimax searches in 1000 positions.

The dia_mask translation is needed because unlike ranks and files, diagonals do not have a fixed length. There-
fore, masking is needed to keep only the information that has the precise length of the diagonal on which the
particular square is located. The init_ne array has been omitted, but is similar to the north-west array.

To generate moves, the only thing that remains is to decide if the piece can promote or not. For this, bitboards can
be used that have 1s for the squares inside the black or white promotion zone. The promotion zone is represented
by a single integer, so checking if a square is in the promotion zone can be done by checking only bb [0] (for
black pieces) or bb [2] (for white pieces). In the same way, bitboards can be used to check if the promotion of
a Lance, Knight or Pawn is obligatory (Lance and Knight on the top two ranks and Pawn on the top rank).

4. EXPERIMENTAL RESULTS

In the literature, no general method for testing and comparing bitboard techniques has been given. In the papers by
Heinz (1997) and Hyatt (1999b) there is no data comparing the performance of bitboards against other methods.
The reason for this is probably that bitboards influence many parts of a program, making it hard to do exactly
the same thing (e.g., move generation, evaluation, static exchange evaluator etc.) with and without bitboards. To
compare bitboards and attack tables in shogi, I have focused on move generation, as this is part of every program.
This comparison has also been used by Yamashita (2005), whose implementation of bitboards is similar to the
one presented in this paper.

Yamashita (2005) compared the performance of bitboards with the performance of attack tables for move gen-
eration in mating problems and found that using bitboards makes his mate solver about 20% faster. However,
comparing the performance for mating problems is not a good idea because generating defense moves against
checks is relatively costly with bitboards. Specifically, interposing pieces between a checking piece and King is
expensive. Most chess programs using bitboards like CRAFTY therefore generate moves normally irrespective of
checks and delete moves that leave the King in check on the next ply.

Therefore, here a different test has been performed. To make a clean comparison between bitboards and attack
tables, the performance of a depth-limited minimax search without quiescence search in which the moves were
generated by the attack tables used in the shogi program SPEAR was compared with a program in which the
moves were generated using bitboards. The evaluation function only calculated the material balance. The use of
depth-limited minimax assures that for both attack tables and bitboards the number of generated moves is exactly
the same. Therefore, the generated search trees in both cases were exactly the same size. Time differences
between the searches are therefore only caused by the difference between attack tables and bitboards.

In this way, a 3-ply and a 4-ply minimax search was conducted for 1000 different positions taken from profes-
sional games. This experiment was run on a 3.0GHz Pentium 4 machine under WindowsXP. The results are
summarized in Table 1. The savings over using bitboards are more than 40%.

5. CONCLUSIONS AND FUTURE WORK

In this paper it was explained how bitboards can be used to do move generation in shogi. Even though the
implementation of bitboards in shogi is less efficient than in chess because of the different board size, it has been
shown that the speed of move generation in shogi can be improved significantly if bitboards are used instead
of attack tables. From the result of Table 1 we may conclude that the move generation using bitboards is more
than 40% faster than the move generation with attack tables. Therefore, it seems likely that bitboards are a good
alternative for attack tables.

However, this is not the final conclusion about bitboards in shogi. One problem with bitboards is that the in-
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formation about squares is only binary. If multi-valued information is needed, bitboards are not so effective. In
shogi, attack tables are also used in the evaluation function, especially when calculating piece mobility and the
danger on squares around the King. If it is important for a good evaluation of king danger to know the balance
between the number of attacking and defending pieces, evaluation will be slower with bitboards than with attack
tables. World champion BONANZA is currently not evaluating this balance, but only counts the number of pieces
that are attacking and defending, something that can be done efficiently with population-count functions.

There are still many ways in which the efficiency of the bitboard representation presented in this paper can be
improved. One area of improvement is the use of hardware specific optimizations. For example, the FirstOne
function to find the first bit in a bitboard is currently a pure software function. Another optimization is the idea of
magic multiplication, which has recently been discussed on Internet computer-chess forums. This method makes
the iterative updating of rotated bitboards unnecessary. A comparison of magic multiplication and bitboards for
chess on the TalkChess.com computer chess forum seems to indicate that a further 10% increase in speed can be
expected. It should be noted that this percentage does not translate easily to the data given in this paper, because
the shogi engine is too simple. Trying bitboards and magic multiplication in a full shogi engine is therefore an
important future work.

It will also be interesting to see how fast the bitboards can be made if two 64-bit integers were used instead of
three 32-bit integers. The big memory overhead could be a problem, but it would be good to investigate how
much faster bitboards can be if memory issues are ignored. Roughly the opposite idea is to find ways for using
the obsolete bits in the bitboard representation. For example, representing (a part of) the edge of the board with
the obsolete bits could give optimizations that are not possible in chess.

Finally, move generation speed is not the only reason for using bitboards. Other parts of the program may also
benefit from using bitboards. For example, in CRAFTY the static exchange evaluator used in quiescence search is
implemented efficiently using bitboards and this can be done in shogi as well.

To conclude, an important extra advantage of bitboards is that they make a program much more transparent. The
attack table code of my previous program was buried in a dark corner where I would rather not go, while the
bitboard code is much easier to change if there are new ideas for optimizations. I therefore warmly recommend
the use of bitboards, even if your game of choice does not have a board where the number of squares is a power
of two.
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