
Using Bitboards for Move Generation in Shogi

Reijer Grimbergen

Department of Informatics, Yamagata University

Jonan 4-3-16, Yonezawa-shi, 992-8510 Japan

E-mail: grim@yz.yamagata-u.ac.jp

Abstract

In this paper it will be explained how to use bitboards for move generation in shogi. In chess,

bitboards have been used in most strong programs because of the easy representation of a chess board

by a single 64-bit integer. For shogi, a less efficient representation has to be used because a shogi board

has 81 squares instead of 64. A representation with an array of three integers is proposed, where each

integer represents 27 squares of the board. This representation is then used for move generation in a

similar way to the methods used in chess, for example by using rotated bitboards for generating the

moves of the sliding pieces rook, bishop and lance. A comparison of move generation speed between the

method using bitboards and by using the more common method of attack tables showed that by using

bitboards the move generation speed of the program Spear was improved by 48.8%.

Keywords: Bitboards, move generation, computer shogi.

1 Introduction

Bitboards are a binary representation of knowledge
for all squares on the board for a certain game. The
presence of certain information for a square is rep-
resented by setting the bit for this square on the
board to 1, while the absence is represented by a
0. Bitboards have been used extensively in chess
programs because the size of the board (8 × 8 = 64
squares) makes it possible to fit one bitboard into
a single 64-bit integer. This makes the representa-
tion of bitboards very efficient (no unused memory)
and representing new knowledge by combining the
information from different bitboards very fast, be-
cause logical operations like AND, OR, NOT and
XOR can be used.

Shogi has a different board size (9 × 9 = 81
squares), so the convenient single integer repre-
sentation for one bitboard cannot be used. De-
spite this, the bitboard representation offers many
ways to efficiently represent information used in the
search and evaluation part of a game program. This
may outweigh the disadvantage of a less than opti-
mal board representation.

Until recently, most shogi programs used attack
tables (called kiki in Japanese) to represent impor-
tant search and evaluation knowledge. My program
Spear also had attack tables, but after reading a
discussion on Hiroshi Yamashita’s bulletin board [4]
about bitboards in August 2005 I decided to fur-
ther investigate the use of bitboards in shogi. Ya-

mashita’s conclusion was that bitboards may not
make much difference, but when the program Bo-

nanza, one of the few shogi programs using the
bitboard representation won the World Computer
Shogi Championships last May, it seemed clear to
me that bitboards in shogi deserved more attention.

Yamashita’s explanation was very important to
understand the difference between using bitboards
in chess and shogi and deserves a more prominent
place than being buried deeply into the archives of
the BBS. However, even with the original paper
by Robert Hyatt (author of the strong chess pro-
gram Crafty) [2] and the thorough description on
Wikipedia [3] on bitboards, it takes some time to
grasp the full idea. Furthermore, there are some
details of the representation as given by Yamashita
that can be improved. Also, after the implementa-
tion was finished, initial tests seemed to show a sig-
nificant improvement in performance, even though
Yamashita had reported only an increase in speed
of about 20% for a tsume shogi solver. Finally,
by using bitboards, Spear became a much more
transparent program and there seem plenty of pos-
sibilities to use bitboards in different parts of the
program in the future.

Therefore, I think that trying the bitboard rep-
resentation is important for every shogi program,
although it will depend on the structure of the in-
dividual program whether or not a significant in-
crease in performance can be achieved. By writing
this paper, I hope I will make it easier for other

shogi programmers to implement bitboards by ex-
plaining how bitboards are used in chess and how
this representation was changed to use bitboards in
shogi.

In Section 2, the differences between the bitboard
representation used in chess programs and a bit-
board representation for shogi will be explained, as
well as how bitboards can be used to do move gener-
ation in a shogi program. In Section 3, move gener-
ation speed using bitboards is compared with move
generation speed using attack tables. The conclu-
sion is that bitboards also have potential in shogi,
but that it depends on the structure of the evalu-
ation function if they will give a significant perfor-
mance improvement or not (Section 4).

2 Bitboards in Chess and

Shogi

As explained in Section 1, bitboards are used to effi-
ciently represent knowledge about a game position.
The chess program Crafty uses bitboards for rep-
resenting many different types of knowledge. For
example, where each of the black and white pieces
are and where they can move to. There are also
bitboards used for evaluation, but here I will ex-
plain how bitboards can be used in shogi to do move
generation. When this basic use of bitboards is un-
derstood, it will not be difficult to use bitboards in
other parts of the program like in the evaluation
function.

2.1 Basic Bitboards

The most important difference between using bit-
boards in chess and using bitboards in shogi is that
the chessboard has 64 squares, which means that
the information about a position fits into a single
64 bit integer. In shogi, this information has to have
81 bits, which will not fit into a single integer. Like
Yamashita [4], I use three integers for representing
the 81 bits of the board. Yamashita defined a struc-
ture of three integers, but as Hoki pointed out [1],
it is better to define an array of length 3 (why this
is better will become clear later):

typedef struct {

unsigned int bb[3];

} BITBOARD;

Because of the different board sizes of chess and
shogi, for each bitboard there will 15 bits that are
obsolete (3 × 32 bits−81 bits = 15 bits). As will
be explained later, especially for piece attacks a lot
of pre-calculated bitboards are necessary. Running
shogi programs on small computers (for example

i012345678

h91011121314151617

g181920212223242526

f012345678

e91011121314151617

d181920212223242526

c012345678

b91011121314151617

a181920212223242526

123456789

bb[0]

bb[1]

bb[2]

Figure 1: Correspondence between shogiboard
squares and bitboard integer bits.

hand held devices) might be a problem when using
bitboards.

Each of the three integers represents one third of
the board. In my representation, the first 27 bits
of the first integer represent squares 1c to 9a, i.e.
the white promotion zone. The first 27 bits of the
second integer represent the squares 1f to 9d, the
neutral zone in the middle. Finally, the first 27
bits of the third integer represent the squares 1i to
9g, i.e. the black promotion zone (see Figure 1).
This representation is different from the initial im-
plementation described by Yamashita, which had
the first two integers represent squares 1i to 1b and
used the 17 bits of the third integer for squares 2b
to 9a. Using 27 bits of each integer is an improve-
ment which was again pointed out by Hoki [1]. The
reason for this improvement will become clear after
the explanation of the attack bitboards below.

To manipulate bitboards in chess, straightfor-
ward logical operations can be used. However, when
a bitboard consists of three different integers, this
is no longer possible. Logical operations like tak-
ing the AND of two bitboards have to be defined as
follows:

void AndBB(BITBOARD *to,

BITBOARD *from1, BITBOARD *from2) {

to->bb[0] = from1->bb[0] & from2->bb[0];

to->bb[1] = from1->bb[1] & from2->bb[1];

to->bb[2] = from1->bb[2] & from2->bb[2];

}

In my implementation, I use similar operations
for OR, XOR and NOT. Furthermore, I use the basic
operations ClearBB (setting all bits to 0), SetBB

(setting all bits to 1) and CopyBB (copying a bit-
board).

Figure 2: Shogi starting position.

i111111111

h010000010

g111111111

f000000000

e000000000

d000000000

c111111111

b010000010

a111111111

123456789

bb[0]

bb[1]

bb[2]

Figure 3: Bit settings for the starting position.

With the basic bitboard data structure defined
like this, it is now possible to represent the knowl-
edge needed in a game program using bitboards.
For example, useful information is to know which
squares are occupied. For the starting position of
shogi (Figure 2), the bitboard Occupied has 1s for
the squares with a black or white piece and 0s for
squares without pieces (Figure 3). In the BITBOARD

data structure this would be:

bb[0]: 00000111111111010000010111111111

bb[1]: 00000000000000000000000000000000

bb[2]: 00000111111111010000010111111111

In the same way a bitboard SentePieces can be
used that has 1s for the squares with black pieces
and 0s for the other squares. For the starting posi-
tion of Figure 2, this bitboard would look like this:

bb[0]: 00000000000000000000000000000000

bb[1]: 00000000000000000000000000000000

bb[2]: 00000111111111010000010111111111

My current implementation has bitboards for
the occupied squares (Occupied), the black pieces
(SentePieces), the white pieces (GotePieces) and
for each of the black and white pieces separately.
For example, the bitboard SenteGold has 1s for
the squares with black golds and for the starting
position this bitboard looks as follows:

bb[0]: 00000000000000000000000000000000

bb[1]: 00000000000000000000000000000000

bb[2]: 00000000000000000000000000101000

These bitboards for position information must be
updated each time the position changes, i.e. each
time either player makes a move.

2.2 Attack Bitboards

With the bitboard data structure and the logical
manipulation of the bits in the bitboard in place,
it is now possible to find the squares attacked by
each square efficiently using bitboards. This will
enable move generation using bitboards instead of
attack tables. There is a difference between find-
ing the attacking squares of sliding pieces (rook,
bishop, lance) and the other pieces. For non-sliding
pieces, the representation of attacking squares with
bitboards is simple, but for sliding pieces, the cal-
culation is more complex.

2.2.1 Non-sliding piece attacks

Calculating the squares a non-sliding piece attacks
is straightforward. For example, to know where a
gold can move to, it is sufficient to pre-calculate the
gold attacks for a black or white gold on each of the
81 squares (a total of 162 bitboards). For example,
the attack bitboard for a black gold on 5e looks
like Figure 4. When the squares that a gold on 5e
attack are needed, this bitboard can be accessed by
indexing the bitboard array with the number of the
square.

2.2.2 Horizontal attacks

The simple pre-calculation method does not work
for the sliding pieces rook, bishop and lance be-
cause where these pieces can move to depends on
how they are blocked by their own pieces or by the
pieces of the opponent. For example, in the starting
position of shogi, the rook on 2h cannot move for-
ward because there is a pawn on 2g. However, if the
pawn on 2g moves to 2f the rook can move to 2g.

i000000000

h000000000

g000000000

f000010000

e000101000

d000111000

c000000000

b000000000

a000000000

123456789

bb[0]

bb[1]

bb[2]

Figure 4: Attack bitboard for a gold on 5e.

Therefore, the possible movement of a sliding piece
depends on the position of the blocking pieces.

The solution to this problem, as pointed out by
Hyatt [2] (among others) is to pre-calculate bit-
boards for all the blocking possibilities. Let’s look
at the most simple case first, which is the horizon-
tal movement of the rook. If a rook is placed on 7h
(like for example in Figure 5), calculate an attack
bitboard for the cases in which there is a piece on
9h, 8h, 6h, 5h, 4h, 3h, 2h, 1h or not. For a rank
there is a total of 29 = 512 bitboards. The hori-
zontal attack patterns for each of the possible 81
squares is the defined as follows:

BITBOARD RankAttacks[81][512];

For the example position in the top part of
Figure 5, the block pattern on the rank of the
rook is 001010110 = 86. In this case the
squares that the rook attacks horizontally are
000000000000000000000000000 for the top three
ranks (i.e. bb[0]), 000000000000000000000000000
for the three ranks in the middle (i.e. bb[1]) and
000000000110110000000000000 = 221184 for the
bottom three ranks (i.e. bb[2]). Therefore, at the
start of the program, this pre-calculated value can
be added for a rook on 7h (square 65 if 9a is repre-
sented by 0 and 1i is represented by 80):

RankAttacks[65][86].bb[0] = 0;

RankAttacks[65][86].bb[1] = 0;

RankAttacks[65][86].bb[2] = 221184;

Similar, for the block pattern 101011110 =
350 in the bottom part of Figure 5, the
squares that the rook attacks horizontally are also
000000000110110000000000000 = 221184, the same
as before. This information can then be added to
the pre-calculated bitboard:

i
�����

h
����

g

i
����

h
������

g

Figure 5: Attack patterns for black rook on 7h.

RankAttacks[65][350].bb[0] = 0;

RankAttacks[65][350].bb[1] = 0;

RankAttacks[65][350].bb[2] = 221184;

In this case, for the attacks it does not matter if
there is a lance on 9h or not or if there is a pawn on
4h or not. For the pawn on 4h, the block patterns
has to be added, because in an actual position, it
is not known beforehand if the gold on 5h will be
there or not. However, for the lance on 9h, the
fact that the horizontal attack does not change is
significant: for every block pattern, the horizontal
attack value is the same with or without a piece on
the edge squares (9h and 1h in the example). This
observation made by Hyatt is important, because
the array RankAttacks already takes up a big chunk
of memory: 81× 512× 3× 4 bytes = 497664 bytes.
If the edge squares do not change the attack, then
the edge squares can be excluded from the blocking
pattern bitboards, leaving 27 = 128 bitboards for
each of the 81 squares of the board. The size of the
array RankAttacks is now reduced to 81 × 128 ×

3 × 4 bytes = 124416 bytes. This is still not small
(especially compared to chess, where this bitboard
array is three times smaller), but does not require
special hardware requirements, even if a number of
these arrays are needed to cover vertical attacks and
diagonal attacks, as will be explained below.

With these pre-calculated bitboards, it is now
easy to get the horizontal attacks for a rook on a
square:

void CalcRankAtt(BITBOARD *bb, int from) {

// Get the block pattern from

// the position bitboard

int pcs = GetRankBits(&Occupied, from);

// Strip the bits for the edge squares

pcs = (pcs & CLEAR9MASK) >> 1;

// Get the horizontal attacks from the

// pre-calculated bitboards

CopyBB(bb, &RankAttacks[from][pcs]);

}

int GetRankBits(BITBOARD *bb, int sq) {

// Take the rank bits from bitboard

// integer 0, 1, or 2

return (bb->bb[sq_to_bb_index[sq]]

>> rank_shift_no[sq])

& ALLONES_9;

}

int sq_to_bb_index[] = {

0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0,

1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1,

2, 2, 2, 2, 2, 2, 2, 2, 2,

2, 2, 2, 2, 2, 2, 2, 2, 2,

2, 2, 2, 2, 2, 2, 2, 2, 2,

};

int rank_shift_no[] = {

18, 18, 18, 18, 18, 18, 18, 18, 18,

9, 9, 9, 9, 9, 9, 9, 9, 9,

0, 0, 0, 0, 0, 0, 0, 0, 0,

18, 18, 18, 18, 18, 18, 18, 18, 18,

9, 9, 9, 9, 9, 9, 9, 9, 9,

0, 0, 0, 0, 0, 0, 0, 0, 0,

18, 18, 18, 18, 18, 18, 18, 18, 18,

9, 9, 9, 9, 9, 9, 9, 9, 9,

0, 0, 0, 0, 0, 0, 0, 0, 0,

};

It is now clear why having an array of three in-
tegers is a better representation than three differ-
ent integers like in Yamashita’s original implemen-
tation. By using the array sq to bb index to access
the bitboard integer that is needed, no if-statements
are required. Furthermore, it is also clear why hav-
ing the three integers representing the white pro-
motion zone, the middle of the board and the black
promotion zone is a better representation. In the
current implementation, each rank on the board
only has bits in one of the three bitboard inte-
gers, while in Yamashita’s original implementation
a rank on the board could have bits in more than
one integer, needing extra operations to get the in-
formation for a single rank.

2.2.3 Vertical attacks

Calculating the attacks along a rook file (and lance
file) is a little more complicated than the attacks
along a rank. The problem is that for horizontal
attacks, the bits are in consecutive positions, so
masking and shifting can be used to extract these
bits from the Occupied bitboard (this is done in the
function GetRankBits above). For attacks along a
file, the bits are 9 positions apart, so many more op-
erations are required to extract the block pattern.

i807978777675747372

h717069686766656463

g626160595857565554

f535251504948474645

e444342414039383736

d353433323130292827

c262524232221201918

b17161514131211109

a876543210

123456789

i81726354453627180

h71625344352617079

g61524334251606978

f51423324150596877

e41322314049586776

d31221303948576675

c21120293847566574

b11019283746556473

a0918273645546372

123456789

Figure 6: Normal square allocation on the left and
90 degree rotation square allocation on the right.

The solution to this problem is to use rotated
bitboards. By rotating the board 90 degrees, the
bits that were 9 positions apart, are now next to
each other (see Figure 6).

The 90 degree rotation to make the bits for ver-
tically connected squares adjacent in the bitboard
representation changes the attack calculation. Now
the array FileAttacks is needed in which every
rotated block pattern is translated to a vertical at-
tack. The possible block patterns are the same as in
the case of horizontal attacks, but instead of hor-
izontal attacks, the array has to give the vertical
attacks. An example for a rook on 2e is given in
Figure 7. Square 2e is 43, the block pattern is
1001011 = 75 (edge squares stripped off this time)
and the bitboard for the attack for this block pat-
tern has a 1 at bit 1 and bit 10 of the first integer,
a 1 at bit 19 and 1 of the second integer and a 1 at
bit 19 of the third integer:

FileAttacks[43][75].bb[0] = 1026;

FileAttacks[43][75].bb[1] = 524290;

FileAttacks[43][75].bb[2] = 524288;

Furthermore, a new bitboard Occupied rot90 is
needed to represent the occupied squares in case of
rotation. The information in this bitboard must be
updated at every move, giving a small overhead.
The file attack code now is straightforward:

void CalcFileAtt(BITBOARD *bb, int from) {

// Get the block pattern, rotating

// the source square 90 degrees

int pcs = GetRankBits(&Occupied_rot90,

init_rot90[from]);

// Strip the bits for the edge squares

pcs = (pcs & CLEAR9MASK) >> 1;

// Get the vertical attacks

CopyBB(bb, &FileAttacks[from][pcs]);

}

i000000000

h010010110

g000000000

f000000000

e000000000

d000000000

c000000000

b000000000

a000000000

123456789

i000000000

h000000000

g010000000

f010000000

e000000000

d010000000

c010000000

b010000000

a000000000

123456789

Figure 7: Example of a board position (left), its representation with a 90 degree rotation (middle) and
the bitboard representing the attacks of the rook on 2e (right).

// Translate square to 90 degree rotation

int init_rot90[] = {

72, 63, 54, 45, 36, 27, 18, 9, 0,

73, 64, 55, 46, 37, 28, 19, 10, 1,

74, 65, 56, 47, 38, 29, 20, 11, 2,

75, 66, 57, 48, 39, 30, 21, 12, 3,

76, 67, 58, 49, 40, 31, 22, 13, 4,

77, 68, 59, 50, 41, 32, 23, 14, 5,

78, 69, 60, 51, 42, 33, 24, 15, 6,

79, 70, 61, 52, 43, 34, 25, 16, 7,

80, 71, 62, 53, 44, 35, 26, 17, 8,

};

This solution was given by Hyatt [2] for chess and
it can be used in shogi as well. In chess it is only
used for rook attacks, but in shogi it can be used
for both rooks and lances.

2.2.4 Diagonal attacks

It is now clear how to find the attacking squares
for rooks and lances, but there is still the problem
of the bishop. Bishops attack along diagonals and
the bits for diagonals are not adjacent. A rotation
of 90 degrees will not help, but Hyatt pointed out
that the same rotation trick can be used for bishops,
but now rotations of 45 degrees clockwise and 45
degrees anti-clockwise must be used. In Figure 8,
the rotations of the original squares (9a is 0, 1i is
80) are given.

In this figure it can be seen that for a 45 degree
clockwise rotation, all diagonals going up from left
to right are now adjacent (horizontal) squares. For
example, the squares 27 19 11 3 are the diagonal
that starts from 9d and ends at 6a. In contrast, for
a 45 degree anti-clockwise rotation, the diagonals
going down from left to right are adjacent. For ex-
ample, the squares 4 14 24 34 44 are the diagonal
that starts from 5a and ends at 1e.

8
7 17

6 16 26
5 15 25 35

4 14 24 34 44
3 13 23 33 43 53

2 12 22 32 42 52 62
1 11 21 31 41 51 61 71

0 10 20 30 40 50 60 70 80
9 19 29 39 49 59 69 79
18 28 38 48 58 68 78
27 37 47 57 67 77
36 46 56 66 76
45 55 65 75

54 64 74
63 73
72

0
9 1

18 10 2
27 19 11 3

36 28 20 12 4
45 37 29 21 13 5

54 46 38 30 22 14 6
63 55 47 39 31 23 15 7

72 64 56 48 40 32 24 16 8
73 65 57 49 41 33 25 17
74 66 58 50 42 34 26
75 67 59 51 43 35
76 68 60 52 44
77 69 61 53

78 70 62
79 71
80

Figure 8: Rotating the original board squares 45 de-
grees clockwise rotation (left) and 45 degrees anti-
clockwise rotation (right).

To put diagonals in adjacent bits of an attack
bitboard, the bits of the bitboard are assigned as in
Figure 9.

The procedure for calculating the squares at-
tacked by a bishop is now similar to the pro-
cedure for rook and lance. For each possible
block pattern of pieces on a diagonal, the attacks
are pre-calculated. Furthermore, the bitboards
Occupied r45 and Occupied l45 contain the oc-
cupied squares for a 45 degree clockwise rotation
and 45 degrees anti-clockwise rotation respectively.
These two bitboards must be updated for every
move.

There is one extra problem in the case of diagonal
attacks. In Figure 9 it can be seen that there are
diagonals overflowing into the next integer of the
bitboard. For clockwise rotation, square 6 is part
of the diagonal 54 46 38 30 22 14 6 (9g to 3a) and
square 74 is part of the diagonal 74 66 58 50 42 34
26 (7i to 1c). Similarly, for anti-clockwise rotation,
the square 62 is part of the diagonal 2 12 22 32 42 52
62 (7a to 1g) and square 18 is part of the diagonal

807179627078536169

774452606876354351

596775263442505866

741725334149576573

81624324048566472

7152331394755636

14223038465451321

2937454122028363

11192721018190

727363746454756555

457666564636776757

473727786858483828

18796959493929199

80706050403020100

71615141312111162

52423222122534333

2313344342414435

25155261661778

Figure 9: Bit assignment for 45 degrees clockwise
rotation (left) and 45 degrees anti-clockwise rota-
tion (right).

18 28 38 48 58 68 78 (9c to 3i).
Square 74 (18 in the anti-clockwise version) is

not a problem, because this is an edge square at
the top of the diagonal and will be stripped any-
way. Therefore, this overflow into the next integer
of the bitboard (from bb[1] to bb[2]) can be ig-
nored. Square 6 (62 in the anti-clockwise version) is
also an edge square, so its contents can be ignored.
However, because this time the square is at the bot-
tom of the diagonal (i.e. the most significant bit)
there is the problem of fitting the remaining 6 bits
of the diagonal to the 7 bit block information. A
single left shift is needed while for all the other di-
agonals a right shift is needed. Therefore, these two
diagonals are a special case and a condition has to
be added to the function that gets the block infor-
mation from the rotated boards Occupied l45 and
Occupied r45.

The pre-calculated attack bitboards are stored in
the following bitboard arrays:

BITBOARD DiaAtt_r45[81][128];

BITBOARD DiaAtt_l45[81][128];

The calculation procedure is now as follows:

void DiaAttRL(BITBOARD *bb, int from) {

int pcs = GetDiaBits(&Occupied_r45,

init_r45[from]);

pcs = (pcs & CLEAR9MASK) >> 1;

CopyBB(bb, &DiaAtt_r45[from][pcs]);

}

void DiaAttLR(BITBOARD *bb, int from) {

// Similar, with left 45 degree rotation

}

int GetDiaBits(BITBOARD *bb, int sq) {

// Special case of 9g-3a and 7a-1g

if(sq >= 21 && sq <= 27)

return (bb->bb[0] & ALLONES_6) << 1;

// Other cases

return (bb->bb[sq_to_bb_dia[sq]]

>> dia_shift_no[sq]) & dia_mask[sq];

}

int sq_to_bb_dia[] = {

0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 2,

2, 2, 2, 2, 2, 2, 2, 2, 2,

2, 2, 2, 2, 2, 2, 2, 2, 2,

2, 2, 2, 2, 2, 2, 2, 2, 2,

};

int dia_shift_no[] = {

26, 24, 24, 21, 21, 21, 17, 17, 17,

17, 12, 12, 12, 12, 12, 6, 6, 6,

6, 6, 6, 0, 0, 0, 0, 0, 0,

0, 18, 18, 18, 18, 18, 18, 18, 18,

9, 9, 9, 9, 9, 9, 9, 9, 9,

1, 1, 1, 1, 1, 1, 1, 1, 21,

21, 21, 21, 21, 21, 21, 15, 15, 15,

15, 15, 15, 10, 10, 10, 10, 10, 6,

6, 6, 6, 3, 3, 3, 1, 1, 0,

};

int dia_mask[] = {

1, 3, 3, 7, 7, 7, 15, 15, 15,

15, 31, 31, 31, 31, 31, 63, 63, 63,

63, 63, 63,127,127,127,127,127,127,

127,255,255,255,255,255,255,255,255,

511,511,511,511,511,511,511,511,511,

255,255,255,255,255,255,255,255,127,

127,127,127,127,127,127, 63, 63, 63,

63, 63, 63, 31, 31, 31, 31, 31, 15,

15, 15, 15, 7, 7, 7, 3, 3, 1,

};

The dia mask translation is needed because un-
like ranks and files, diagonals do not have a fixed
length. Therefore, masking is needed to keep only
the information that has the precise length of the
diagonal on which the particular square is located.
The init r45 and init l45 arrays have been omit-
ted. These arrays give the position of a square after
45 degree clockwise and anti-clockwise rotation.

2.3 Other Bitboards

The bitboards explained above are enough to gen-
erate almost all of the moves in shogi. For example,
the moves for a black bishop can be found by first
making a bitboard with 1s on the squares where the
bishop from square sq can move to:

BITBOARD bb1, bb2, moves;

DiaAttRL(&bb1, sq);

DiaAttLR(&bb2, sq);

OrBB(&moves, &bb1, &bb2);

AndBB(&moves, &moves, &GotePieces);

Version Time (s)
Attack tables 24810
Bitboards 12709

Table 1: Results of 4 ply minimax searches in 100
positions.

Then, a loop through the bits gives the possible
destination squares (for a promoted bishop, these
destination squares are ADD-ed with a bitboard
that has 1s for all king moves on sq). What re-
mains is to decide if the piece can promote or not.
For this, bitboards can be used that have 1s for the
squares inside the black or white promotion zone.
The promotion zone is represented by a single in-
teger, so checking if a square is in the promotion
zone can be done by checking only bb[0] or bb[2].
In the same way, bitboards can be used to check if
a lance, knight or pawn must promote (lance and
knight on the top two ranks and pawn on the top
rank).

3 Experimental Results

In shogi programs, bitboards have not been as
widely used as in chess, which is to be expected be-
cause of the difference in board size. It is more com-
mon to have attack tables (kiki tables in Japanese)
that keep track of where each piece can move to,
updating this information when the board position
changes. Only after it became clear that the cur-
rent Computer Shogi World Champion Bonanza

is using bitboards, the discussion about its use in
shogi is re-opened. Yamashita compared the use of
bitboards with the use of attack tables in his pro-
gram YSS and only found an increase in speed of
about 20% [4] when bitboards are used in a tsume
shogi solver.

Here a different test has been performed. To
make a clean comparison between bitboards and
attack tables, the performance of a minimax pro-
gram in which the moves were generated by attack
tables used in the program Spear was compared
with a program in which the moves were generated
by using bitboards. Therefore, the generated trees
in both cases were exactly the same size. The evalu-
ation function only calculated the material balance.
In this way, a 4 ply minimax search was conducted
for 100 different positions taken from two profes-
sional games. This experiment was run on a 3.0GHz
Pentium 4 machine under WindowsXP. The results
are summarized in Table 1.

From this table it can be seen that the move
generation using bitboards is 48.8% faster than the

move generation with attack tables.

4 Conclusions and Future

Work

In this paper it was explained how bitboards can be
used to do move generation in shogi. Even though
the implementation of bitboards in shogi is less ef-
ficient than in chess because of the different board
size (the 64 squares of a chess board fit in exactly
one integer), it has been shown that the speed of
move generation in shogi can be improved signif-
icantly if bitboards are used instead of attack ta-
bles. Using bitboards instead of the attack tables
in Spear made the move generation almost twice
as fast. Therefore, it seems likely that bitboards are
a good alternative for attack tables.

This being said, move generation is not the only
part of a shogi program where attack tables are
used. For example, attack tables are also used in
the evaluation function, especially when calculating
piece mobility and the danger on squares around the
king. It is possible that the extra calculations used
in bitboards make the evaluation slower, thus de-
creasing the overall performance of the program.
There is a big difference between the evaluation
functions of different programs, so the effectiveness
of the bitboard representation might have to be
tested for every program.

However, there are other reasons for using bit-
boards. First, other parts of the program may
also benefit from using bitboards. For example,
the static exchange evaluator used in quiescence
search can be implemented quite efficiently using
bitboards. Second (and perhaps most appealing),
if machines become available that allow 96 bit ad-
dressing, the shogi board will fit and the bitboard
representation will become between two and three
times faster overnight without much additional ef-
fort. Such an improvement cannot be expected in
the case of attack tables.

References

[1] K. Hoki. http://524.teacup.com/yss/bbs. Mes-
sage posted on August 20th 2005.

[2] R. Hyatt. http://www.cis.uab.edu/hyatt/bitmaps.html.

[3] Wikipidia. http://en.wikipedia.org/wiki/Bitboard.

[4] H. Yamashita. http://524.teacup.com/yss/bbs.
Message posted on August 12th 2005.

