
Enhancing Search Efficiency by
Using Move Categorization Based on

Game Progress in Amazons

Yoshinori Higashiuchi1 and Reijer Grimbergen2

1 Department of Computer Science, Saga University, Saga, Japan.
hi yoshi@fu.is.saga-u.ac.jp

2 Department of Informatics, Yamagata University, Yonezawa, Japan.
grim@yz.yamagata-u.ac.jp

Abstract. Amazons is a two-player perfect information game with a
high branching factor, particularly in the opening. Therefore, improv-
ing the efficiency of the search is important for improving the play-
ing strength of an Amazons program. In this paper we propose a new
method for improving search in Amazons by using move categories to
order moves. The move order is decided by the likelihood of the move
actually being selected as the best move. Furthermore, it will be shown
that the likelihood of move selection strongly depends upon the stage
of the game. Therefore, our method is further refined by adjusting the
likelihood of moves according to the progress of the game. Self-play ex-
periments show that using move categories significantly improves the
strength of an Amazons program and that combining move categories
with game progress is better than using only move categories.

Keywords: Selective search, move categorization, game progress, Ama-
zons.

1 Introduction

Amazons is a two-player perfect information game with very simple rules [1].
From a computational point of view, its main feature is the large number of
legal moves, particularly in the early stages of the game (in the initial position
there are 2,176 possible moves). Even though the number of legal moves decreases
as the game progresses, the average number of moves in an Amazons’ position
(479) [2] is considerably larger than chess (35), shogi (80) or Go (250) [3]. Because
of the large average number of moves, the well-known search techniques that
have been so successful in other games cannot be easily applied to Amazons.
Therefore, Amazons has attracted some attention recently as a topic of research.
These efforts have focused on building an evaluation function that can evaluate
positions accurately without deep search [4, 5] and on how to do selective search
in Amazons [6]. In this paper, we will present a new search method for Amazons
which is partly a method for selective search but mainly aims at improving search
efficiency.

Amazons is a relatively new game, so there are no known strategies on how
to play the opening and there is no expert feedback available to decide which
moves are good in the middle game. In other game programs (e.g. chess, Go, or
shogi), years of experience have led to heuristics for moves that are likely to lead
to an advantageous position. These moves can then be given priority during the
search. In chess, for example, moves that capture material or moves that cover
the center are searched early, while sacrifices are searched last. By using these
heuristics, the efficiency of α-β search can be improved, increasing search speed.

The research presented in this paper presents two methods to improve the
search efficiency of an Amazons program. First, we will propose a set of move
categories and use a calculation method from Realization Probability Search [7]
to order moves based on these move categories. Second, we will show that the
importance of move categories changes as the game develops. Therefore, when
deciding the move ordering it is important to take the progress of the game into
account.

In Sect. 2 we will start with an explanation of the properties of Amazons and
how these properties lead to heuristics for good moves. These heuristics will be
used to group moves into different categories. In Sect. 3 each category is assigned
a priority based on statistical data from game records. In Sect. 4 a simple method
to measure progress in Amazons is presented and the relation between game
progress and the move categories is given. In Sect. 5 the results of a number of
experiments comparing the performance of programs without move categories,
with move categories and with move categories based on game progress will be
presented. Finally, in Sect. 6 we will give conclusions and suggestions for future
work.

2 Move Categories in Amazons

Because of the large number of possible moves in Amazons, under tournament
conditions it is impossible to do a deep full-width search (the full-width search
version of our program can only search to a depth of 2 or 3 ply in the opening
to 6 or 7 ply near the end of the game). Therefore, using selective search is the
only way to do a reasonable look-ahead. The most common domain-independent
methods for selective search, like the null-move heuristic [8], ProbCut [9] and
Multi-ProbCut [10] use a shallow search to estimate the result of deep searches.
There are two reasons why these methods face problems in Amazons. One reason
is that there is no deep search in Amazons until the endgame. Predicting the re-
sults of shallow searches by even shallower searches is risky. The second problem
is that Amazons programs suffer from the even-odd iteration instability. There
are no known methods to do quiescence search in Amazons, so there can be
important changes in the evaluation function value after playing a move. A lot
of effort into building an evaluation function for Amazons goes into minimizing
this effect, but there are still significant differences between the evaluation of
even and odd iterations, especially in the opening. This makes it hard to predict
the result of a d ply search with a d − 1 ply search. Also, in the case of shallow

searches, the differences between a d ply search and a d−2 ply search are usually
too large to be useful for a prediction.

Consequently, domain-dependent methods for selective search are needed in
Amazons. One method, proposed by Avetisyan and Lorentz [6], is to use the
evaluation function to evaluate each move after it has been played and discard
moves for which the evaluation is below a certain threshold. This method was
refined by making a difference between evaluation after the Amazon move and
shooting the arrow.

Rather than eliminating a certain number of possible moves from the search,
we will propose a method to use knowledge about good Amazons moves to
improve the efficiency of α-β search. A common method for improving search
efficiency is to use information that has become available during search. The
best move of the previous iteration, killer moves and the history heuristic are
examples of such methods. By trying these moves first, the probability of a cut
is increased, and search speed is improved. However, when a new position is
encountered, this information is unavailable but searching good moves first will
still improve search speed. In this case heuristic, game-specific information is
needed to suggest which moves to search first.

In Amazons, with its short history, heuristics for selecting good moves are
unknown. However, as pointed out by Lieberum [5] and confirmed by our own
experience in playing and programming Amazons, confining one or more oppo-
nent Amazons to a small space is an important strategic theme. From this, a
number of straightforward ways to limit the opponent Amazons’ moving ability
and improving the moving ability of one’s own Amazons come to mind. We have
categorized these heuristics into 10 basic categories that are given in Table 1.

Table 1. Basic move categories in Amazons.

No. Category Type #

1 Move blocks opponent Amazons 0, 1, 2, 3 or more 4
2 Arrow blocks opponent Amazons 0, 1, 2, 3 or more 4
3 Move adjacent to opponent Amazon true, false 2
4 Arrow adjacent to opponent Amazon true, false 2
5 Blocking a single Amazon in multiple ways true, false 2
6 Move previously blocked Amazon 0, 1, 2 3
7 Move Amazon to which Amazon moved adjacently true, false 2
8 Move Amazon to which arrow was shot adjacently true, false 2
9 Block Amazon that moved on previous move true, false 2

10 Move Amazon not blocking any opponent Amazon true, false 2

As pointed out, in Amazons it is important to confine the opponent Ama-
zons to a small space, especially in the opening. Blocking the movement of the
opponent Amazons, either by the move or by the arrow, is therefore a candidate
for a good move. These are categories 1 and 2 in Table 1. An example of a move

that blocks three opponent Amazons with both the Amazon and the arrow is
given in Fig. 1. The white move blocked three black Amazons with the move
(A7, D10 and G10) and also three black Amazons with the arrow (D10, G10
and J7). This is a move that is often played as the first move in a game of Ama-
zons. We make a difference between blocking 0, 1, 2 and 3 or more opponent
Amazons, so the total number of categories is 4. Note that we are also making a
difference between Amazons and arrows blocking the opponent. While an arrow
is a simple block, the Amazon that blocked is not only blocking the opponent
Amazon, but at the same time also blocked by the opponent Amazon. We feel
that this difference between Amazon and arrow should be reflected in the move
categories. This is an important difference with work by Soeda [11], a proposal
for move categories for Amazons that made no difference between Amazon and
arrow.

Fig. 1. D1-D7(G7): Amazon and arrow
block 3 opponent Amazons.

Fig. 2. D10-I5(I4): Amazon and arrow
adjacent to opponent (J4), also block-
ing J4 twice.

Even more aggressive is moving or shooting an arrow to the square adjacent
to an Amazon (category 3 and 4). This is often a threat to trap the Amazon
within the next few moves. In Fig. 2, the move D10-I5(I4) puts an Amazon and
an arrow adjacent to the Amazon on J4. This Amazon on J4 now has very little
space and to avoid being trapped white might have to move it next.

If a single Amazon can be blocked in more than one way, this is also a threat
to trap this Amazon (category 5). If an opponent Amazon can be trapped early,
the game becomes a fight of four Amazons against three, which is often a winning
advantage. In Fig. 1, the black Amazons on D10 and G10 are blocked twice and
so is the white Amazon on J4 in Fig. 2.

Fig. 3. J4-H2(C7): moving the threat-
ened Amazon (J4), also blocking twice.

Fig. 4. D1-G1(D4): blocking the Ama-
zon that just moved (E5) with a free
Amazon.

Moving the Amazon that is in danger of being trapped is the idea behind
categories 6, 7 and 8. In Fig. 2, moving the Amazon on J4 (which was blocked
twice) leads to the position of Fig. 3. Moving an Amazon that was blocked on the
previous move helps avoiding a trap (category 6). Note that we make a difference
between the number of times the Amazon was blocked on the previous move (0, 1
or 2 times), giving a total of 3 different categories. Moving the Amazon to which
an Amazon moved adjacently or an arrow was shot adjacently are categories 7
and 8, which mirror categories 3 and 4.

Blocking the Amazon that moved on the previous move (category 9) is based
on the assumption that the previous move had meaning. An opponent Amazon
tried to avoid being trapped or tried to claim or attack some territory. In Fig. 4,
the previous move E7-E5(A1) is an attempt to enter the white territory at the
bottom left. To keep the black Amazon from entering, white blocks this Amazon
with D1-G1(D4).

Finally, category 10 is a move where an Amazon is not blocking any opponent
Amazon. Often, this means that the Amazon is idle and should be moved or can
be moved freely. In Fig. 4, the Amazons on G1 and J8 are Amazons that are not
blocked by any opponent Amazon. J8 is an Amazon that is almost trapped and
moving it to try and escape might be good. The Amazon on G1 is defending the
white territory at the bottom left, so this Amazon will often move inside this
territory to make sure that the opponent cannot enter.

The 10 basic categories are reflecting different aspects of moves, and we al-
ready gave examples of moves belonging to a combination of categories. The
total number of combinations is 42 × 31 × 27 = 6, 144. Of these 6,144 com-
binations there are 4,724 combinations that are theoretically impossible. For

example, when shooting an arrow adjacent to an opponent Amazon, this also
automatically blocks an opponent Amazon at least once, so it never happens
that category 4 is true and category 2 is 0. In our experiments, we have used the
remaining 1,420 categories.

Using combinations of categories is important, because moves with multiple
meanings are expected to be better than moves that belong to only a single
category. Examples of move categorization for the moves in the figures are given
in Table 2.

Table 2. Examples of move categories.

CatNo. 1 2 3 4 5 6 7 8 9 10 Example move

1 3 3 F F T 0 F F F F Figure 1: D1-D7(G7)
2 1 2 T T T 1 F F F F Figure 2: D10-I5(I4)
3 0 2 F F F 2 T T F F Figure 3: J4-H2(C7)
4 0 1 F T F 1 F F T T Figure 4: D1-G1(D4)

3 Priority Ordering of Moves

To assess the importance of the categories proposed in Sect. 2, we investigated
how often a move from a certain category was actually played. For this we
used 11,000 games from our Amazons program The Amazons Saga (TAS).
In recent Computer Olympiads, TAS has shown that it can play on par with
the strongest Amazons programs.

The method we used is the same as for determining the realization probabili-
ties of move categories in Realization Probability Search (RPS), which has been
a very successful approach in shogi [7]. The realization probability of a category
is calculated with the following formula:

Pi =
Ai

Bi

Pi: The realization probability of category i
Ai: Number of times a move from category i was played
Bi: Number of positions where a move from category i was possible

The realization probability of a category is the ratio of positions where a move
from a certain category was possible and the number of times that this move
was actually played. The calculation has only been done until the stage where
all territory is fixed. By fixed territory is meant that all Amazons have their own
(i.e. non-overlapping) territory and the rest of the game is only about filling the
territory with the maximum number of moves. Because this is a simple counting

problem, usually a game of Amazons is stopped in a position with fixed territory.
Both players count the number of moves needed and the winner is agreed upon.

Although in RPS the game records of expert players are used, we think it
is important to use the game records of the same program to calculate the re-
alization probability values. These values strongly depend upon the evaluation
function, so improvement of search speed can only be expected if the moves are
ordered in the way the program ‘likes them’, i.e. that have a high probability of
leading to a good evaluation. Ideally, realization probabilities should be recal-
culated with every change in the evaluation function. However, we feel that the
evaluation function of TAS is stable enough to give reliable results.

A similar method for calculating realization probabilities in the absence of
expert moves was proposed by Hashimoto et al. [12]. Their method calculates
the probabilities by having a Lines of Action program play itself, recording the
categories of the moves that were possible in each position and the category of
the move that was selected after searching the position. If these positions and the
selected moves are stored for future recalculation of the realization probabilities,
the method is identical to ours. If not, our method has the advantage that if
categories are changed, the recalculation of the realization probabilities can be
done without search, using the standard set of games. If the evaluation function
is changed (i.e. the program might select different moves), a new set of games is
necessary for both methods.

The realization probabilities of the 10 basic categories of Table 1 are given
in Table 3.

Table 3. The realization probabilities of the basic categories.

Category RP (%)

Move blocked 0 Amazons 33.1
Move blocked 1 Amazon 56.9
Move blocked 2 Amazons 13.1
Move blocked 3 or more Amazons 6.6
Arrow blocked 0 Amazons 14.9
Arrow blocked 1 Amazon 71.4
Arrow blocked 2 Amazons 17.2
Arrow blocked 3 or more Amazons 5.3
Move adjacent to opponent Amazon 52.3
Arrow adjacent to opponent Amazon 72.3
Multiple opponent block 36.2
Blocking the previously moved Amazon 50.6
Moving the Amazon that was blocked once by the previous move 49.0
Moving the Amazon that was blocked twice by the previous move 33.9
Moving Amazon to which Amazon moved adjacently 32.8
Moving Amazon to which arrow was shot adjacently 34.5
Moving a non-blocking Amazon 45.6

The realization probabilities of Table 3 show that our basic categories in gen-
eral have a high probability of being played and are therefore valid candidates
for good moves. There are two notable exceptions: the categories “Move blocked
3 or more Amazons” and “Arrow blocked 3 or more Amazons” have a low real-
ization probability which seems counter-intuitive. However, our experience with
Amazons shows that the high mobility of Amazons makes it very rare to trap
more than one Amazon. Rather than trying to confine multiple Amazons, it is
better to try and trap a single Amazon and then use the advantage of having
four Amazons fighting three.

In general RPS, the next step is to use the realization probabilities of move
categories to decide the depth of the search. Moves with a high realization prob-
ability are searched deeper than moves with a low realization probability. Unfor-
tunately, this method can currently not be used in Amazons programs because
of the aforementioned even-odd iteration effect. Searching moves with a high
probability one ply deeper makes the search unstable. General RPS is therefore
not feasible until there is a solution to the even-odd iteration effect in Amazons.

Instead of using realization probabilities to decide the depth of the search,
we propose to use the realization probabilities of Table 3 to order moves of new
positions. Moves with a high realization probability have a higher probability of
being played, so a correlation between realization probability and good moves
can be expected.

As pointed out earlier, in our program the 10 basic categories are not used
directly. Instead, the 1,420 theoretically possible combinations of basic categories
are used. The calculation method for these categories is the same as those for the
basic categories. Examples of the categories used in TAS and their realization
probability are given in Table 4.

Table 4. Realization probabilities of move categories.

CatNo. Example move RP (%) Order

1 Figure 1: D1-D7(G7) 32.615 2
2 Figure 2: D10-I5(I4) 0.902 371
3 Figure 3: J4-H2(C7) 0.158 876
4 Figure 4: D1-G1(D4) 7.250 25

In Table 4, the realization probability of the moves in Table 2 are given. The
table shows that D1-D7(G7) is a move belonging to a category with an extremely
high probability (second highest among the 1,420 categories). The reason for this
is that such moves are only possible in the opening. Actually, the category with
the largest realization probability was only possible in 10 positions. In contrast,
the probability of J4-H2(C7) is very low, even though this can be considered a
good move. One way of improving the move ordering is to adjust the category
priorities according to game progress, which we will explain next.

4 Adjusting Category Priorities Using Game Progress

The strategic features of Amazons shift as the game progresses. In the opening,
the mobility and balance of the Amazons are most important. As the game
progresses, it becomes more important to secure territory. Large territories in
which Amazons can move freely will lead to more available moves at the end of
the game, so the opponent will run out of moves first.

Because of this, the realization probabilities of Table 3 are likely to change as
the game progresses. To reflect this shift in realization probabilities, the progress
of the game has to be used to adjust the realization probabilities of the proposed
move categories. There are a number of ways to measure progress in the game of
Amazons, for example move number or using territory measurements. Here we
will restrict ourselves to the most basic progress measurement: move number. In
Amazons, the number of arrows on the board grows with each move. Therefore,
the game is over after a maximum of 92 moves. Using the number of arrows
(i.e. the number of moves) is therefore a natural choice for measuring progress
in Amazons.

For this analysis the same 11,000 games as for calculating the realization
probability were used. Despite this large number of games, near the end of the
game the moves in certain categories are almost never played. For example,
positions where it is possible to block three Amazons or more become very rare
near the end of the game. Although this might be a problem of our method, the
number of possible moves near the end of the game is relatively small, so deep
search can be conducted even without using move categories. Therefore, we do
not expect that this problem will influence playing strength much.

Because a sudden change in realization probability is undesirable, we grouped
data for the change in realization probability into groups of 8 moves: 0-7 (note
that there is no data for move 0), 8-15, 16-23, etc. The results of this analysis
for blocking by Amazon move and blocking by arrow (categories 1 and 2) are
given in Fig. 5 and Fig. 6 respectively.

���

�����

� ���

� ���

� ���

� ���

	 ���

 ���

� ���

� ���

������

���
�� ��� � � 	 � ������� � � � �� � ����� ��� ��
��� � ����	 � 	���	�� �
 �
�� �
���� ��� ��
��� � ��
���������! �"�#���$

% &
'() *
'+) ,
-
. /,
0 '
0)()
+ 1

2
3
4
5�687�9;:<>=>? 4

Fig. 5. Changes in realization probability for blocking with the Amazon.

���

�����

� ���

� ���

� ���

� ���

	 ���

 ���

� ���

� ���

������

���
�� ��� � � 	 � ������� � � � ��� � ����� ��� ��
��� � ����	 � 	���	�� �
 �
�� �
���� ��� ��
���� � ��
������� �"!�#�$���%

& '
()* +
(,* -
.
/ 0-
1 (
1*)*
, 2

3
4
5
687:9�;=<>@?BA 5

Fig. 6. Changes in realization probability for blocking with the arrow.

From these graphs it is clear that the realization probability of categories can
change dramatically as the game progresses, so rather than taking the average
realization probability over the whole game, it seems more promising to use real-
ization probabilities based on game progress. Examples of the actual realization
probabilities used in TAS for the four moves in Table 4 are given in Table 5.

Table 5. Game progress related realization probabilities (%) for the moves in Table 4.

Mvno Category number
1 2 3 4

1 - 7 32.65 0.51 0 0.52
8 - 15 0.01 0.99 0.18 1.20

16 - 23 0.01 0.88 0.21 4.20
24 - 31 0.01 2.22 0.20 8.32
32 - 39 0.01 2.41 0.80 18.39
40 - 47 0.01 1.76 2.53 17.75
48 - 55 0.01 17.65 0.01 30.86
56 - 63 0.01 0.01 0.01 50.44
64 - 71 0.01 0.01 0.01 37.50
72 - 79 0.01 0.01 0.01 75.00
80 - 87 0.01 0.01 0.01 0.01
88 - 92 0.01 0.01 0.01 0.01

5 Experimental Results

To investigate the significance of using game progress combined with move or-
dering based on our move category proposal, we have used our program TAS.
TAS has the following properties:

– General features
1. Iterative deepening α-β search.
2. Best move of previous iteration is searched first.
3. The evaluation function is a linear function of Queen Move Distance,

King Move Distance (both explained by Lieberum [5]) and mobility of
Amazons.

– Move generation
1. Each Amazon is assigned a number in TAS. Moves for each Amazon are

generated in the order of these numbers, i.e. first all moves for Amazon
1, then all moves for Amazon 2, etc.

2. The moves of each Amazon and arrow are generated in clockwise order:
moving up, moving right up, moving right, etc.

– Priority ordering
1. Moves are ordered based on realization probability adjusted by game

progress.
2. Moves that are not in any category (i.e. their realization probability is

0%) are pruned.

Our experiments have been conducted with three versions of the same pro-
gram. The first version is searching without the use of move categories (called
NMC), generating moves in the order explained above. The second version uses
the realization probabilities, but no game progress (called NGP). The third ver-
sion uses realization probabilities adjusted by game progress (called GP).

There are 263 move categories that have a realization probability of 0% (i.e.
possible but not played) when game progress is not taken into account. When
using realization probabilities based on progress, the number of categories with a
probability of 0% changes from 590 categories in move 1-7 to 2 or less after move
48. These numbers should be seen relative to the number of possible categories.
In move 1-7 there are 1324 categories that are possible, while in move 88-92 only
6 categories are possible. Details are given in Table 6.

Table 6. Number of categories with a realization probability of 0%.

Mvno NP (Pos) MoveNo NP (Pos) MoveNo NP (Pos)

1 - 7 590 (1324) 32 - 39 45 (1218) 64 - 71 2 (127)
8 - 15 214 (1404) 40 - 47 9 (944) 72 - 79 1 (90)

16 - 23 140 (1395) 48 - 55 1 (615) 80 - 87 0 (45)
24 - 31 100 (1335) 56 - 63 1 (276) 88 - 92 0 (6)

We have conducted two experiments. First, we selected a number of positions
and let each of the test programs search to depth 3, comparing the search time.
The results of this experiment give an indication of the speed-ups that can be
expected. The second experiment is a self-play experiment between the different

versions. By using categories, certain moves will be discarded without any search
(the moves that do not fit into a category), so there is a risk of missing good
moves that are not in our categories. The self-play experiments will show how
playing strength is influenced by using move categories.

5.1 Comparing Search Times to Depth 3

To investigate the savings in search effort, we compared the search times of
searching to depth 3 for the three program versions in a number of example
positions. Because the number of legal moves in an average Amazons position
is high, searching to depth 3 for a large number of positions is infeasible. We
limited ourselves to a set of 1,521 positions from 30 Amazons games. The data
for 30 games was very similar to the data for 25 games, so we do not think that
using more positions will lead to many new insights.

�

�����

�����

�����

�����

� ���

� � ��� ������� � � ��� �	�����

���������������������������� ���!

" #
$%&
' (
) *#
+-,#&
.

/10325476�859:0<;>= 8@?

�

�����

�����

�����

�����

� ���

� � ��� ������� � � ��� �	�����

���������������������������� ���!

" #
$%&
' (
) *#
+-,#&
.

/10325476983:�;�0<25;�8<=5=

�

�����

�����

�����

�����

� ���

� � ��� �	����� � � ��� �
�����
�������������������������� ��!���"

$
%&'
()
* +$
,.-$'
/

021�35476�8�9;:<8=4;><>

�

�����

�����

�����

�����

� ���

� � ��� �	����� � � ��� �������

�������������������	������������

! "
$
%&
'(
)* +
, -&
. %&
)/

021436587:96;81=<?> 9A@

021B;�5DCE94FG<H16;8<H9A@8@

I 5DCE94FG<H16;8<H9A@8@

Fig. 7. Search times to depth 3 against number of legal moves for NMC (upper left),
NGP (upper right), GP (lower left) and the average search times for each program
version (lower right).

In Fig. 7 the search times of searching to depth 3 in the positions of 30 games
are given for NMC, NGP and GP. From this figure it is clear that without using
move categories, there are many positions that require a long time to finish the

search to depth 3. Also, without move categories there seems to be no strong
relation between the number of legal moves and the search time. Using move
categories improves the search times considerably and there is a much stronger
relation between search times and the number of legal moves. Finally, using move
categories and game progress further improves the search speed. Also, there is a
very strong relation between search times and the number of legal moves when
game progress is taken into account.

From the graph showing the average search times against the number of legal
moves, it is clear that in case of a high number of legal moves searching with-
out move categories becomes quickly infeasible. Using move categories is more
promising and using move categories based on game progress is more promising
than using only move categories.

There were a number of positions where NMC returned a different move than
NGP or GP. NGP played a different move in 95 positions, while GP played a
different move in 98 positions. The reason for this difference was that a move in
the principle variation of NMC was deleted because it had a realization probabil-
ity of 0%. This seems to indicate that there is a risk that good moves are being
discarded, but investigating the positions in question showed that none of the
discarded moves were particularly good or necessary. From these results, we con-
cluded that the current categories are good enough to lead to an improvement
in search speed without losing playing strength. To confirm this, we conducted
a number of self-play experiments that we will explain next.

5.2 Results of Self-play Experiments

In Amazons, there is the problem of generating positions where the chances
of winning can be considered equal, because there are no experts and there
is almost no opening theory. We generated the initial positions of our self-play
experiments by using 50 different positions that were randomly selected from the
opening book (after the fourth move from the starting position of the game).
These positions were then played twice by each program version, once with white
and once with black. It is possible that the initial positions are better for one
side, so we also collected data of the number of squares that the winning side
could freely move to at the end of the game. Even if both versions win a game
from the same starting position, the difference in free squares at the end of the
game gives an indication of difference in playing strength.

We played a total of 9 matches with 100 games each, giving each program
10 seconds, 30 seconds and 60 seconds per move. The results of these matches
are given in Table 7. The results of the matches show that our concerns about
ending up in uneven positions were unfounded. Even without considering the
differences in free squares at the end of the game, each match result except
one gives a statistical probability of more than 95% that the winning version
is stronger than the losing version (the 58-42 result between NGP and NMC
gives a probability of 94.5% that NGP is stronger than NMC). Furthermore, the
results are not influenced by the amount of time given per move. The results of
the matches for 10 seconds and 60 seconds are very close and it seems that the

only difference is that more time can reduce the margin of defeat, as can be seen
in the drop of the total number of free squares.

Table 7. Self-play results for 100 games with 10, 30 and 60 seconds per move.

Match 10 seconds 30 seconds 60 seconds
Result SqDif Result SqDif Result SqDif

NGP - NMC 58 - 42 +146 60 - 40 +92 59 - 41 +87
GP - NMC 79 - 21 +428 72 - 28 +439 75 - 25 +388
GP - NGP 62 - 38 +214 70 - 30 +259 63 - 37 +165

In Table 8 the results for each program version are summarized. The self-play
experiments show that using move categories for move ordering significantly im-
proves the playing strength of an Amazons program and that playing strength
can be further improved significantly by using game progress to adjust the real-
ization probabilities of the move categories.

Table 8. Total self-play results.

No Version 10 seconds 30 seconds 60 seconds

1 GP 141 - 59 142 - 58 138 - 62
2 NGP 96 - 104 90 - 110 96 - 104
3 NMC 63 - 137 68 - 132 66 - 134

6 Conclusions and Future Work

In this paper, we have presented a method for improving the search efficiency of
an Amazons program by ordering moves based on move categories. We have also
investigated the influence of game progress on the move ordering. Experiments
showed that a program using move categories is stronger than a program with-
out move categories and that a program using move categories based on game
progress is stronger than a program not taking game progress into account.

One area of future work concerns the realization probabilities of the cate-
gories. As explained, there are a number of categories that are so special that
they occur in only a small fraction of the positions. As a result, these categories
often get a very high or very low probability. To address this problem, different
ways to decide realization probabilities need to be investigated.

A different problem is that the different program versions all have the same
evaluation function, leading to mutual oversights. Improvement of general play-

ing strength needs to be further assessed by playing other strong Amazons pro-
grams like Amazong or Invader.

Another important future work concerns the representation of game progress.
The game progress we have used in our experiments is based upon the number of
moves played. This is not a perfect solution, because the moment when territory
gets fixed differs from game to game and is only loosely related to the number
of moves. The number of moves seems to be a good way of measuring progress
when games develop in a normal way, but in case of abnormal development (very
early or very late fixed territory) the proposed category probabilities can lead
the program astray. As a future work, we intend to investigate different methods
for measuring progress and compare these with our current findings.

Finally, using game progress to change realization probabilities is an idea that
can be applied to other games than Amazons. RPS in shogi might also benefit
from dynamically updating realization probabilities using game progress. We
are planning to investigate the feasibility of our method in other games than
Amazons.

References

1. Wikipedia: http://en.wikipedia.org/wiki/The Game of the Amazons (2005)
2. Sasaki, N., Iida, H.: Report on the First Open Computer-Amazon Championship.

ICCA Journal 22 (1999) 41–44
3. Matsubara, H., Iida, H., Grimbergen, R.: Natural developments in game research:

From Chess to Shogi to Go. ICCA Journal 19 (1996) 103–112
4. Hashimoto, T., Kajihara, Y., Sasaki, N., Iida, H., Yoshimura, J.: An Evaluation

Function for Amazons. In Van den Herik, H., Monien, B., eds.: Advances in Com-
puter Games 9. Van Spijk, Venlo, The Netherlands (2001) 191–201

5. Lieberum, J.: An Evaluation Function for the Game of Amazons. In Van den
Herik, H., Iida, H., Heinz, E., eds.: Advances in Computer Games 10. Kluwer
Academic Publishers, Boston, USA (2003) 299–308

6. Avetisyan, H., Lorentz, R.: Selective Search in an Amazons Program. In Schaeffer,
J., Müller, M., Björnsson, Y., eds.: Computers and Games: Proceedings CG2002.
LNCS 2883. Springer-Verlag, Berlin (2002) 123–141

7. Tsuruoka, Y., Yokoyama, D., Chikayama, T.: Game-tree Search Algorithm Based
on Realization Probability. ICGA Journal 25 (2002) 145–152

8. Beal, D.: A Generalised Quiescence Search Algorithm. Artificial Intelligence 43
(1990) 85–98

9. Buro, M.: ProbCut: An Effective Selective Extension of the alpha-beta Algorithm.
ICCA Journal 18 (1995) 71–76

10. Buro, M.: Experiments with Multi-probcut and a New High-quality Evaluation
Function for Othello. In den Herik, H., H.Iida, eds.: Games in AI Research. Van
Spijk, Venlo, The Netherlands (2000) 77–96

11. Soeda, S., Tanaka, T.: Categories for Amazons Moves. In: Game Programming
Workshop in Japan ’03, Kanagawa, Japan (2003) 118–121 (In Japanese).

12. Hashimoto, T., Nagashima, J., Sakuta, M., Uiterwijk, J., Iida, H.: Application of
Realization Probability Search for Any Games - a case study using Lines of Action
-. In: Game Programming Workshop in Japan ’02, Kanagawa, Japan (2002) 81–86
(In Japanese).

